Grid and Road Expressions Are Complementary for Trajectory Representation Learning
- URL: http://arxiv.org/abs/2411.14768v1
- Date: Fri, 22 Nov 2024 07:15:46 GMT
- Title: Grid and Road Expressions Are Complementary for Trajectory Representation Learning
- Authors: Silin Zhou, Shuo Shang, Lisi Chen, Peng Han, Christian S. Jensen,
- Abstract summary: Trajectory representation learning (TRL) maps trajectories to vectors that can be used for many downstream tasks.
Existing TRL methods use either grid trajectories, capturing movement in free space, or road trajectories, capturing movement in a road network, as input.
We propose a novel multimodal TRL method, dubbed GREEN, to jointly utilize Grid and Road trajectory Expressions for Effective representatioN learning.
- Score: 40.94269411061165
- License:
- Abstract: Trajectory representation learning (TRL) maps trajectories to vectors that can be used for many downstream tasks. Existing TRL methods use either grid trajectories, capturing movement in free space, or road trajectories, capturing movement in a road network, as input. We observe that the two types of trajectories are complementary, providing either region and location information or providing road structure and movement regularity. Therefore, we propose a novel multimodal TRL method, dubbed GREEN, to jointly utilize Grid and Road trajectory Expressions for Effective representatioN learning. In particular, we transform raw GPS trajectories into both grid and road trajectories and tailor two encoders to capture their respective information. To align the two encoders such that they complement each other, we adopt a contrastive loss to encourage them to produce similar embeddings for the same raw trajectory and design a mask language model (MLM) loss to use grid trajectories to help reconstruct masked road trajectories. To learn the final trajectory representation, a dual-modal interactor is used to fuse the outputs of the two encoders via cross-attention. We compare GREEN with 7 state-of-the-art TRL methods for 3 downstream tasks, finding that GREEN consistently outperforms all baselines and improves the accuracy of the best-performing baseline by an average of 15.99\%.
Related papers
- RED: Effective Trajectory Representation Learning with Comprehensive Information [41.58502888707689]
Trajectory representation learning (TRL) maps trajectories to vectors that can then be used for various downstream tasks.
We propose a self-supervised TRL framework, called RED, which effectively exploits multiple types of trajectory information.
arXiv Detail & Related papers (2024-11-22T17:51:21Z) - Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning.
We propose TIGR, a novel model designed to integrate grid and road network modalities while incorporatingtemporal dynamics.
We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities.
arXiv Detail & Related papers (2024-11-21T10:56:02Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
We propose a cross-domain few-shot in-context learning method based on the MLLM for enhancing traffic sign recognition.
By using description texts, our method reduces the cross-domain differences between template and real traffic signs.
Our approach requires only simple and uniform textual indications, without the need for large-scale traffic sign images and labels.
arXiv Detail & Related papers (2024-07-08T10:51:03Z) - More Than Routing: Joint GPS and Route Modeling for Refine Trajectory
Representation Learning [26.630640299709114]
We propose Joint GPS and Route Modelling based on self-supervised technology, namely JGRM.
We develop two encoders, each tailored to capture representations of route and GPS trajectories respectively.
The representations from the two modalities are fed into a shared transformer for inter-modal information interaction.
arXiv Detail & Related papers (2024-02-25T18:27:25Z) - Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics [30.9735101687326]
Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management.
Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited.
We propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START.
arXiv Detail & Related papers (2022-11-17T13:14:47Z) - Jointly Contrastive Representation Learning on Road Network and
Trajectory [11.613962590641002]
Road network and trajectory representation learning are essential for traffic systems.
Most existing methods only contrast within the same scale, i.e., treating road network and trajectory separately.
We propose a unified framework that jointly learns the road network and trajectory representations end-to-end.
arXiv Detail & Related papers (2022-09-14T03:08:20Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.