Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics
- URL: http://arxiv.org/abs/2211.09510v4
- Date: Thu, 7 Mar 2024 16:15:54 GMT
- Title: Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics
- Authors: Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, Jingyuan
Wang
- Abstract summary: Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management.
Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited.
We propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START.
- Score: 30.9735101687326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory Representation Learning (TRL) is a powerful tool for
spatial-temporal data analysis and management. TRL aims to convert complicated
raw trajectories into low-dimensional representation vectors, which can be
applied to various downstream tasks, such as trajectory classification,
clustering, and similarity computation. Existing TRL works usually treat
trajectories as ordinary sequence data, while some important spatial-temporal
characteristics, such as temporal regularities and travel semantics, are not
fully exploited. To fill this gap, we propose a novel Self-supervised
trajectory representation learning framework with TemporAl Regularities and
Travel semantics, namely START. The proposed method consists of two stages. The
first stage is a Trajectory Pattern-Enhanced Graph Attention Network (TPE-GAT),
which converts the road network features and travel semantics into
representation vectors of road segments. The second stage is a Time-Aware
Trajectory Encoder (TAT-Enc), which encodes representation vectors of road
segments in the same trajectory as a trajectory representation vector,
meanwhile incorporating temporal regularities with the trajectory
representation. Moreover, we also design two self-supervised tasks, i.e.,
span-masked trajectory recovery and trajectory contrastive learning, to
introduce spatial-temporal characteristics of trajectories into the training
process of our START framework. The effectiveness of the proposed method is
verified by extensive experiments on two large-scale real-world datasets for
three downstream tasks. The experiments also demonstrate that our method can be
transferred across different cities to adapt heterogeneous trajectory datasets.
Related papers
- Grid and Road Expressions Are Complementary for Trajectory Representation Learning [40.94269411061165]
Trajectory representation learning (TRL) maps trajectories to vectors that can be used for many downstream tasks.
Existing TRL methods use either grid trajectories, capturing movement in free space, or road trajectories, capturing movement in a road network, as input.
We propose a novel multimodal TRL method, dubbed GREEN, to jointly utilize Grid and Road trajectory Expressions for Effective representatioN learning.
arXiv Detail & Related papers (2024-11-22T07:15:46Z) - Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning.
We propose TIGR, a novel model designed to integrate grid and road network modalities while incorporatingtemporal dynamics.
We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities.
arXiv Detail & Related papers (2024-11-21T10:56:02Z) - Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory [53.37473225728298]
The rapid evolution of deep learning and large language models has led to an exponential growth in the demand for training data.
Matching Training Trajectories (MTT) has been a prominent approach, which replicates the training trajectory of an expert network on real data with a synthetic dataset.
We introduce a novel method called Matching Convexified Trajectory (MCT), which aims to provide better guidance for the student trajectory.
arXiv Detail & Related papers (2024-06-28T11:06:46Z) - T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation [6.844357745770191]
Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications.
We propose T-JEPA, a self-supervised trajectory similarity method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning.
arXiv Detail & Related papers (2024-06-13T09:51:51Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - ST2Vec: Spatio-Temporal Trajectory Similarity Learning in Road Networks [27.452831603278565]
We propose ST2Vec, a trajectory-learning based architecture that considers fine-grained spatial and temporal between pairs of trajectories.
Inspired by curriculum concept, ST2Vec employs curriculum learning for model optimization to improve both convergence and effectiveness.
An experimental study offers evidence that ST2Vec outperforms all state-of-the-art competitors substantially in terms of effectiveness, efficiency, and robustness.
arXiv Detail & Related papers (2021-12-17T06:18:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Vehicle Trajectory Prediction in City-scale Road Networks using a
Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention
Mechanisms [1.027974860479791]
Tray prediction of vehicles at the city scale is of great importance to various location-based applications such as vehicle navigation, traffic management, and location-based recommendations.
Existing methods typically represent a trajectory as a sequence of grid cells, road segments or intention.
We propose a novel sequence-to-sequence model named D-LSTM, which represents each trajectory as a sequence of intersections and associated movement directions, and then feeds them into a LSTM encoder-decoder network for future generation.
arXiv Detail & Related papers (2021-06-21T15:14:28Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.