Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach
- URL: http://arxiv.org/abs/2411.14798v1
- Date: Fri, 22 Nov 2024 08:49:08 GMT
- Title: Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach
- Authors: Shulin Lan, Kanlin Liu, Yazhou Zhao, Chen Yang, Yingchao Wang, Xingshan Yao, Liehuang Zhu,
- Abstract summary: This paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect)
We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs.
We also propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark.
- Score: 11.51480331713537
- License:
- Abstract: Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques.
Related papers
- LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks [7.965986856780787]
This paper introduces a novel training-free landmark perceptual watermark, LampMark for short.
We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline.
We present an end-to-end watermarking framework that imperceptibly embeds and extracts watermarks concerning the images to be protected.
arXiv Detail & Related papers (2024-11-26T08:24:56Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
We propose a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication.
Our proposed framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks.
arXiv Detail & Related papers (2024-10-02T18:05:03Z) - Learning Expressive And Generalizable Motion Features For Face Forgery
Detection [52.54404879581527]
We propose an effective sequence-based forgery detection framework based on an existing video classification method.
To make the motion features more expressive for manipulation detection, we propose an alternative motion consistency block.
We make a general video classification network achieve promising results on three popular face forgery datasets.
arXiv Detail & Related papers (2024-03-08T09:25:48Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models.
We propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping.
arXiv Detail & Related papers (2023-11-02T16:04:32Z) - Dual Defense: Adversarial, Traceable, and Invisible Robust Watermarking
against Face Swapping [13.659927216999407]
Malicious applications of deep forgery, represented by face swapping, have introduced security threats such as misinformation dissemination and identity fraud.
We propose a novel active defense mechanism that combines traceability and adversariality, called Dual Defense.
It invisibly embeds a single robust watermark within the target face to actively respond to sudden cases of malicious face swapping.
arXiv Detail & Related papers (2023-10-25T10:39:51Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications.
Deep learning method using RGB and infrared images demands a large amount of training data for new attacks.
We present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face.
arXiv Detail & Related papers (2020-03-18T03:04:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.