High-Resolution Image Synthesis via Next-Token Prediction
- URL: http://arxiv.org/abs/2411.14808v1
- Date: Fri, 22 Nov 2024 09:08:58 GMT
- Title: High-Resolution Image Synthesis via Next-Token Prediction
- Authors: Dengsheng Chen, Jie Hu, Tiezhu Yue, Xiaoming Wei,
- Abstract summary: We introduce D-JEPA$cdot$T2I, an extension of D-JEPA incorporating flow matching loss to enable continuous resolution learning.
For the first time, we achieve state-of-the-art textbfhigh-resolution image synthesis via next-token prediction.
- Score: 13.131691198804127
- License:
- Abstract: Denoising with a Joint-Embedding Predictive Architecture (D-JEPA), an autoregressive model, has demonstrated outstanding performance in class-conditional image generation. However, the application of next-token prediction in high-resolution text-to-image generation remains underexplored. In this paper, we introduce D-JEPA$\cdot$T2I, an extension of D-JEPA incorporating flow matching loss, designed to enable data-efficient continuous resolution learning. D-JEPA$\cdot$T2I leverages a multimodal visual transformer to effectively integrate textual and visual features and adopts Visual Rotary Positional Embedding (VoPE) to facilitate continuous resolution learning. Furthermore, we devise a data feedback mechanism that significantly enhances data utilization efficiency. For the first time, we achieve state-of-the-art \textbf{high-resolution} image synthesis via next-token prediction. The experimental code and pretrained models will be open-sourced at \url{https://d-jepa.github.io/t2i}.
Related papers
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [22.11487736315616]
Rectified flow is a recent generative model formulation that connects data and noise in a straight line.
We improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales.
We present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities.
arXiv Detail & Related papers (2024-03-05T18:45:39Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - A Layer-Wise Tokens-to-Token Transformer Network for Improved Historical
Document Image Enhancement [13.27528507177775]
We propose textbfT2T-BinFormer which is a novel document binarization encoder-decoder architecture based on a Tokens-to-token vision transformer.
Experiments on various DIBCO and H-DIBCO benchmarks demonstrate that the proposed model outperforms the existing CNN and ViT-based state-of-the-art methods.
arXiv Detail & Related papers (2023-12-06T23:01:11Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - Reinforcement Learning from Diffusion Feedback: Q* for Image Search [2.5835347022640254]
We present two models for image generation using model-agnostic learning.
RLDF is a singular approach for visual imitation through prior-preserving reward function guidance.
It generates high-quality images over varied domains showcasing class-consistency and strong visual diversity.
arXiv Detail & Related papers (2023-11-27T09:20:12Z) - Text-driven Visual Synthesis with Latent Diffusion Prior [37.736313030226654]
We present a generic approach using latent diffusion models as powerful image priors for various visual synthesis tasks.
We demonstrate the efficacy of our approach on three different applications, text-to-3D, StyleGAN adaptation, and layered image editing.
arXiv Detail & Related papers (2023-02-16T18:59:58Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
We propose a novel COllaborative Two-Stream vision-language pretraining model termed COTS for image-text retrieval.
Our COTS achieves the highest performance among all two-stream methods and comparable performance with 10,800X faster in inference.
Importantly, our COTS is also applicable to text-to-video retrieval, yielding new state-ofthe-art on the widely-used MSR-VTT dataset.
arXiv Detail & Related papers (2022-04-15T12:34:47Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.