Omni-IML: Towards Unified Image Manipulation Localization
- URL: http://arxiv.org/abs/2411.14823v1
- Date: Fri, 22 Nov 2024 09:44:13 GMT
- Title: Omni-IML: Towards Unified Image Manipulation Localization
- Authors: Chenfan Qu, Yiwu Zhong, Fengjun Guo, Lianwen Jin,
- Abstract summary: We propose Omni-IML, the first generalist model to unify diverse IML tasks.
We validate our approach on IML tasks across three major scenarios: natural images, document images, and face images.
- Score: 33.38946428507517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image manipulation can lead to misinterpretation of visual content, posing significant risks to information security. Image Manipulation Localization (IML) has thus received increasing attention. However, existing IML methods rely heavily on task-specific designs, making them perform well only on one target image type but are mostly random guessing on other image types, and even joint training on multiple image types causes significant performance degradation. This hinders the deployment for real applications as it notably increases maintenance costs and the misclassification of image types leads to serious error accumulation. To this end, we propose Omni-IML, the first generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting the Modal Gate Encoder and the Dynamic Weight Decoder to adaptively determine the optimal encoding modality and the optimal decoder filters for each sample. We additionally propose an Anomaly Enhancement module that enhances the features of tampered regions with box supervision and helps the generalist model to extract common features across different IML tasks. We validate our approach on IML tasks across three major scenarios: natural images, document images, and face images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three tasks with a single unified model, providing valuable strategies and insights for real-world application and future research in generalist image forensics. Our code will be publicly available.
Related papers
- Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model [63.14883657299359]
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering.
tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert, where distribution shifts between pre-training and target datasets constrain target performance, and OpenWorld Stabilization, where catastrophic forgetting erases the model general knowledge.
arXiv Detail & Related papers (2025-03-06T15:29:13Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.
We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)
DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization [49.992614129625274]
ForgeryGPT is a novel framework that advances the Image Forgery Detection and localization task.
It captures high-order correlations of forged images from diverse linguistic feature spaces.
It enables explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture.
arXiv Detail & Related papers (2024-10-14T07:56:51Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
We propose a novel coarse-to-fine MDIR framework,LLM-Morph, for aligning the deep features from different modal medical images.
Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights.
Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task
arXiv Detail & Related papers (2024-08-20T09:58:30Z) - ComNeck: Bridging Compressed Image Latents and Multimodal LLMs via Universal Transform-Neck [45.83457913639876]
This paper presents the first-ever study of adapting compressed image latents to suit the needs of downstream vision tasks that adopt Multimodal Large Language Models (MLLMs)
We propose a novel framework with a lightweight transform-neck and a surrogate loss to adapt compressed image latents for MLLM-based vision tasks.
Our framework has the striking feature excluding the downstream MLLMs from training the transform-neck, and potentially the neural image as well.
arXiv Detail & Related papers (2024-07-29T02:32:44Z) - GIM: A Million-scale Benchmark for Generative Image Manipulation Detection and Localization [21.846935203845728]
Local manipulation pipeline is designed, incorporating the powerful SAM, ChatGPT and generative models.
The GIM dataset has the following advantages: 1) Large scale, including over one million pairs of AI-manipulated images and real images.
We propose a novel IMDL framework, termed GIMFormer, which consists of a ShadowTracer, Frequency-Spatial Block (FSB), and a Multi-window Anomalous Modelling (MWAM) Module.
arXiv Detail & Related papers (2024-06-24T11:10:41Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.
Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.
We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawk is a document-oriented Multimodal Large Language Model (MLLM)
It is designed to explore efficient fine-grained perception by designing four dedicated components.
We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-04-14T09:48:37Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - PROMPT-IML: Image Manipulation Localization with Pre-trained Foundation
Models Through Prompt Tuning [35.39822183728463]
We present a novel Prompt-IML framework for detecting tampered images.
Humans tend to discern authenticity of an image based on semantic and high-frequency information.
Our model can achieve better performance on eight typical fake image datasets.
arXiv Detail & Related papers (2024-01-01T03:45:07Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
We present a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings.
Based on our proposed joint mixing, we propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images.
We hope our work may cast a light on the exploration of joint mixing in future MLLM research.
arXiv Detail & Related papers (2023-11-13T18:59:47Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.