Iterative Reweighted Framework Based Algorithms for Sparse Linear Regression with Generalized Elastic Net Penalty
- URL: http://arxiv.org/abs/2411.14875v1
- Date: Fri, 22 Nov 2024 11:55:37 GMT
- Title: Iterative Reweighted Framework Based Algorithms for Sparse Linear Regression with Generalized Elastic Net Penalty
- Authors: Yanyun Ding, Zhenghua Yao, Peili Li, Yunhai Xiao,
- Abstract summary: elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection.
empirical evidence has shown that the $ell_q$-norm penalty often provides better regression compared to the $ell_r$-norm penalty.
We develop two efficient algorithms based on the locally Lipschitz continuous $epsilon$-approximation to $ell_q$-norm.
- Score: 0.3124884279860061
- License:
- Abstract: The elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection. It is particularly beneficial compared to lasso when the number of predictors greatly surpasses the number of observations. However, empirical evidence has shown that the $\ell_q$-norm penalty (where $0 < q < 1$) often provides better regression compared to the $\ell_1$-norm penalty, demonstrating enhanced robustness in various scenarios. In this paper, we explore a generalized elastic net model that employs a $\ell_r$-norm (where $r \geq 1$) in loss function to accommodate various types of noise, and employs a $\ell_q$-norm (where $0 < q < 1$) to replace the $\ell_1$-norm in elastic net penalty. Theoretically, we establish the computable lower bounds for the nonzero entries of the generalized first-order stationary points of the proposed generalized elastic net model. For implementation, we develop two efficient algorithms based on the locally Lipschitz continuous $\epsilon$-approximation to $\ell_q$-norm. The first algorithm employs an alternating direction method of multipliers (ADMM), while the second utilizes a proximal majorization-minimization method (PMM), where the subproblems are addressed using the semismooth Newton method (SNN). We also perform extensive numerical experiments with both simulated and real data, showing that both algorithms demonstrate superior performance. Notably, the PMM-SSN is efficient than ADMM, even though the latter provides a simpler implementation.
Related papers
- Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
We study the generalized low-rank matrix bandit problem, proposed in citelu2021low under the Generalized Linear Model (GLM) framework.
To overcome the computational infeasibility and theoretical restrain of existing algorithms, we first propose the G-ESTT framework.
We show that G-ESTT can achieve the $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret while G-ESTS can achineve the $tildeO
arXiv Detail & Related papers (2024-01-14T14:14:19Z) - Conditional Matrix Flows for Gaussian Graphical Models [1.6435014180036467]
We propose a general framework for variation inference matrix GG-Flow in which the benefits of frequent keyization and Bayesian inference are studied.
As a train of the sparse for any $lambda$ and any $l_q$ (pse-) and for any $l_q$ (pse-) we have to (i) train the limit for any $lambda$ and any $l_q$ (pse-) and (like for the selection) the frequent solution.
arXiv Detail & Related papers (2023-06-12T17:25:12Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - A Novel Sparse Regularizer [0.0]
This paper introduces a regularizer based on minimizing a novel measure of entropy applied to the model during optimization.
It is differentiable, simple and fast to compute, scale-invariant, requires a trivial amount of additional memory, and can easily be parallelized.
arXiv Detail & Related papers (2023-01-18T03:17:36Z) - Retire: Robust Expectile Regression in High Dimensions [3.9391041278203978]
Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data.
We propose and study (penalized) robust expectile regression (retire)
We show that the proposed procedure can be efficiently solved by a semismooth Newton coordinate descent algorithm.
arXiv Detail & Related papers (2022-12-11T18:03:12Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - An efficient projection neural network for $\ell_1$-regularized logistic
regression [10.517079029721257]
This paper presents a simple projection neural network for $ell_$-regularized logistics regression.
The proposed neural network does not require any extra auxiliary variable nor any smooth approximation.
We also investigate the convergence of the proposed neural network by using the Lyapunov theory and show that it converges to a solution of the problem with any arbitrary initial value.
arXiv Detail & Related papers (2021-05-12T06:13:44Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
We show that when the sub-sample sizes are large then the estimation errors will be sacrificed by too much.
To the best of our knowledge, this is the first work that and guarantees for the lineartext+Stochasticity model.
arXiv Detail & Related papers (2020-10-19T07:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.