論文の概要: Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts
- arxiv url: http://arxiv.org/abs/2411.14896v1
- Date: Fri, 22 Nov 2024 12:37:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:18.089162
- Title: Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts
- Title(参考訳): 生態テキストの多ラベル分類におけるデータ拡張のためのLLMプロンプトの評価
- Authors: Anna Glazkova, Olga Zakharova,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License:
- Abstract: Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks, improving the understanding, generation, and manipulation of human language across domains such as translating, summarizing, and classifying text. Previous studies have demonstrated that instruction-based LLMs can be effectively utilized for data augmentation to generate diverse and realistic text samples. This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media. Detecting green practices in social media aids in understanding their prevalence and helps formulate recommendations for scaling eco-friendly actions to mitigate environmental issues. We evaluated several prompts for augmenting texts in a multi-label classification task, either by rewriting existing datasets using LLMs, generating new data, or combining both approaches. Our results revealed that all strategies improved classification performance compared to the models fine-tuned only on the original dataset, outperforming baselines in most cases. The best results were obtained with the prompt that paraphrased the original text while clearly indicating the relevant categories.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理(NLP)タスクにおいて重要な役割を担い、翻訳、要約、テキストの分類といった分野における人間の言語理解、生成、操作を改善する。
従来の研究では、命令ベースのLCMをデータ拡張に有効に活用し、多種多様な現実的なテキストサンプルを生成することが示されている。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
ソーシャルメディアにおけるグリーンプラクティスの検出は、それらの普及の理解を助け、環境問題を緩和するためにエコフレンドリーな行動をスケーリングするための推奨を策定するのに役立つ。
LLMを用いて既存のデータセットを書き換えたり、新しいデータを生成したり、両方のアプローチを組み合わせることで、マルチラベル分類タスクでテキストを増強するためのいくつかのプロンプトを評価した。
その結果,従来のデータセットのみに微調整したモデルと比較して,分類性能が向上し,ほとんどの場合,ベースラインよりも優れていた。
もっともよい結果が得られたのは、関連カテゴリを明確に示しながら、原文を言い換えるプロンプトである。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
本稿では,Large Language Models(LLMs)を活用した適応的で信頼性の高いテキスト分類パラダイムを提案する。
我々は、4つの多様なデータセット上で、複数のLLM、機械学習アルゴリズム、ニューラルネットワークベースのアーキテクチャの性能を評価した。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
論文 参考訳(メタデータ) (2024-05-17T04:05:05Z) - Text Clustering with LLM Embeddings [0.0]
テキストクラスタリングの有効性は、テキスト埋め込みとクラスタリングアルゴリズムの選択に大きく依存する。
大規模言語モデル(LLM)の最近の進歩は、このタスクを強化する可能性を秘めている。
LLM埋め込みは構造化言語の微妙さを捉えるのに優れていることを示す。
論文 参考訳(メタデータ) (2024-03-22T11:08:48Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - Large Language Model as Attributed Training Data Generator: A Tale of
Diversity and Bias [92.41919689753051]
大規模言語モデル(LLM)は、最近、様々な自然言語処理(NLP)タスクのためのトレーニングデータジェネレータとして活用されている。
本稿では,多様な属性を持つプロンプトを用いたトレーニングデータ生成について検討する。
属性付きプロンプトは、結果のモデルの性能の観点から、単純なクラス条件プロンプトより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-28T03:31:31Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。