論文の概要: Feasibility Study for Supporting Static Malware Analysis Using LLM
- arxiv url: http://arxiv.org/abs/2411.14905v1
- Date: Fri, 22 Nov 2024 13:03:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:02:21.242357
- Title: Feasibility Study for Supporting Static Malware Analysis Using LLM
- Title(参考訳): LLMを用いた静的マルウェア解析支援システムの実現可能性の検討
- Authors: Shota Fujii, Rei Yamagishi,
- Abstract要約: 大規模言語モデル(LLM)はより進歩し、広く普及している。
本研究は,静的解析を支援するためにLLMを使用できるかどうかに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.8057006406834466
- License:
- Abstract: Large language models (LLMs) are becoming more advanced and widespread and have shown their applicability to various domains, including cybersecurity. Static malware analysis is one of the most important tasks in cybersecurity; however, it is time-consuming and requires a high level of expertise. Therefore, we conducted a demonstration experiment focusing on whether an LLM can be used to support static analysis. First, we evaluated the ability of the LLM to explain malware functionality. The results showed that the LLM can generate descriptions that cover functions with an accuracy of up to 90.9\%. In addition, we asked six static analysts to perform a pseudo static analysis task using LLM explanations to verify that the LLM can be used in practice. Through subsequent questionnaires and interviews with the participants, we also demonstrated the practical applicability of LLMs. Lastly, we summarized the problems and required functions when using an LLM as static analysis support, as well as recommendations for future research opportunities.
- Abstract(参考訳): 大規模言語モデル(LLM)は、より高度で広範囲に普及し、サイバーセキュリティを含む様々な分野に適用可能であることを示している。
静的マルウェア分析はサイバーセキュリティにおいて最も重要なタスクの1つだが、時間がかかり、高いレベルの専門知識を必要とする。
そこで我々は,静的解析を支援するためにLLMを使用できるかどうかに着目した実演実験を行った。
まず,LSMがマルウェア機能を説明する能力について検討した。
その結果,LLMは最大90.9\%の精度で関数をカバーする記述を生成することができた。
さらに,6人の静的アナリストに対して,LLM説明を用いた擬似静的解析タスクの実行を依頼し,実際にLLMが利用できるかどうかを検証した。
その後のアンケートと参加者へのインタビューを通じて,LLMの実践的適用性を実証した。
最後に,LLMを静的解析支援として使用する際の問題点と機能,および今後の研究機会の提言について要約した。
関連論文リスト
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
大規模言語モデル(LLM)は、様々な分析タスクにおいて、人間のパフォーマンスに近い能力を示している。
本稿では,Human-LLMパートナーシップに着目した構造化ユーザスタディにより,特殊作業におけるLLMの効率と精度について検討する。
論文 参考訳(メタデータ) (2024-10-07T02:30:18Z) - Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression [8.640838598568605]
我々は,Large Language Models (LLMs) を用いたマルチモーダルコンテンツ分析の新しいワークフローに従って,ケーススタディを実施している。
LLMのビデオアノテーション機能をテストするために,うつ病に関する25の短いビデオから抽出した203を解析した。
論文 参考訳(メタデータ) (2024-06-27T21:03:56Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Multitask-based Evaluation of Open-Source LLM on Software Vulnerability [2.7692028382314815]
本稿では,公開データセットを用いて対話型大規模言語モデル(LLM)を定量的に評価するためのパイプラインを提案する。
我々は,4つの共通ソフトウェア脆弱性タスクをカバーするBig-Vulを用いて,LLMの広範な技術的評価を行う。
既存の最先端のアプローチと事前訓練された言語モデル(LM)は、ソフトウェア脆弱性検出において、LLMよりも一般的に優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-02T15:52:05Z) - The Emergence of Large Language Models in Static Analysis: A First Look
through Micro-Benchmarks [3.848607479075651]
我々は,Pythonプログラムのコールグラフ解析と型推論を改善する上で,現在のLarge Language Models (LLM) が果たす役割について検討する。
本研究により, LLMは型推論において有望な結果を示し, 従来の手法よりも高い精度を示したが, コールグラフ解析では限界が認められた。
論文 参考訳(メタデータ) (2024-02-27T16:53:53Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - T-Eval: Evaluating the Tool Utilization Capability of Large Language
Models Step by Step [69.64348626180623]
大規模言語モデル (LLM) は様々なNLPタスクにおいて顕著な性能を達成した。
LLMのツール活用能力の評価と分析方法はまだ未検討である。
ツール利用能力を段階的に評価するためにT-Evalを導入する。
論文 参考訳(メタデータ) (2023-12-21T17:02:06Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。