論文の概要: Learning Lifted STRIPS Models from Action Traces Alone: A Simple, General, and Scalable Solution
- arxiv url: http://arxiv.org/abs/2411.14995v1
- Date: Fri, 22 Nov 2024 15:09:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:12.762139
- Title: Learning Lifted STRIPS Models from Action Traces Alone: A Simple, General, and Scalable Solution
- Title(参考訳): アクショントレースからLfted STRIPSモデルを学ぶ: シンプルで汎用的でスケーラブルなソリューション
- Authors: Jonas Gösgens, Niklas Jansen, Hector Geffner,
- Abstract要約: アクショントレースからSTRIPSアクションモデルを学ぶことは、ドメインの述語も学習するので、難しい問題です。
この研究では、よく知られたLOCMシステムと同様、SATアプローチと同様にスケーラブルで完全である新しいアプローチが導入された。
- 参考スコア(独自算出の注目度): 9.360397167690731
- License:
- Abstract: Learning STRIPS action models from action traces alone is a challenging problem as it involves learning the domain predicates as well. In this work, a novel approach is introduced which, like the well-known LOCM systems, is scalable, but like SAT approaches, is sound and complete. Furthermore, the approach is general and imposes no restrictions on the hidden domain or the number or arity of the predicates. The new learning method is based on an \emph{efficient, novel test} that checks whether the assumption that a predicate is affected by a set of action patterns, namely, actions with specific argument positions, is consistent with the traces. The predicates and action patterns that pass the test provide the basis for the learned domain that is then easily completed with preconditions and static predicates. The new method is studied theoretically and experimentally. For the latter, the method is evaluated on traces and graphs obtained from standard classical domains like the 8-puzzle, which involve hundreds of thousands of states and transitions. The learned representations are then verified on larger instances.
- Abstract(参考訳): アクショントレースからSTRIPSアクションモデルを学ぶことは、ドメインの述語も学習するので、難しい問題です。
この研究では、よく知られたLOCMシステムと同様、SATアプローチと同様にスケーラブルで完全である新しいアプローチが導入された。
さらに、このアプローチは一般的であり、隠れたドメインや述語の数やアリティに制限を課すことはない。
新しい学習法は、述語が特定の引数位置を持つアクションの集合によって影響を受けるという仮定がトレースと一致しているかどうかをチェックする「emph{efficient, novel test」に基づいている。
テストに合格する述語とアクションパターンは、事前条件と静的述語で容易に完成する学習されたドメインの基礎を提供する。
本手法は理論的,実験的に研究されている。
後者の場合、この方法は、数十万の状態と遷移を含む8-puzzleのような標準的な古典的領域から得られるトレースとグラフに基づいて評価される。
学習した表現は、より大きなインスタンスで検証される。
関連論文リスト
- Stochastic Directly-Follows Process Discovery Using Grammatical Inference [8.196011179587304]
本稿では,入力トレースに対する文法的推論を基礎とした直接追従グラフの探索手法を提案する。
実世界のデータセットに対する実験により、我々の新しいアプローチは入力トレースとその周波数を最先端技術よりも正確に表現できる小さなモデルを構築することができることを確認した。
論文 参考訳(メタデータ) (2023-12-09T01:56:25Z) - Understanding prompt engineering may not require rethinking
generalization [56.38207873589642]
言語モデルによって与えられるPAC-Bayesと組み合わさったプロンプトの離散的性質は、文献の標準によって非常に厳密な一般化境界をもたらすことを示す。
この研究は、プロンプトエンジニアリングの広範な実践を正当化する可能性がある。
論文 参考訳(メタデータ) (2023-10-06T00:52:48Z) - How to Construct Perfect and Worse-than-Coin-Flip Spoofing
Countermeasures: A Word of Warning on Shortcut Learning [20.486639064376014]
ショートカット学習(英: Shortcut learning、またはClever Hans effect)とは、学習エージェントがデータに存在する急激な相関を学習し、バイアスのあるモデルをもたらす状況を指す。
本研究では, 深層学習に基づくスプーフィング対策(CM)において, ある発話がスプーフィングされているか否かを予測するショートカットの発見に焦点をあてる。
論文 参考訳(メタデータ) (2023-05-31T15:58:37Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
我々は,クラスiNCDにおける現状問題に挑戦し,クラス発見を継続的に,真に教師なしで行う学習パラダイムを提案する。
凍結したPTMバックボーンと学習可能な線形分類器から構成される単純なベースラインを提案する。
論文 参考訳(メタデータ) (2023-03-28T13:47:16Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z) - Learning Invariant Representation for Continual Learning [5.979373021392084]
継続的学習の重要な課題は、エージェントが新しいタスクに直面したときに、以前に学んだタスクを壊滅的に忘れることです。
連続学習のための学習不変表現(IRCL)という新しい擬似リハーサル法を提案する。
共有不変表現を分離することは、タスクのシーケンスを継続的に学習するのに役立つ。
論文 参考訳(メタデータ) (2021-01-15T15:12:51Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。