論文の概要: Stochastic Directly-Follows Process Discovery Using Grammatical Inference
- arxiv url: http://arxiv.org/abs/2312.05433v2
- Date: Tue, 16 Apr 2024 07:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:35:28.187092
- Title: Stochastic Directly-Follows Process Discovery Using Grammatical Inference
- Title(参考訳): 文法推論を用いた確率的直接追従プロセス探索
- Authors: Hanan Alkhammash, Artem Polyvyanyy, Alistair Moffat,
- Abstract要約: 本稿では,入力トレースに対する文法的推論を基礎とした直接追従グラフの探索手法を提案する。
実世界のデータセットに対する実験により、我々の新しいアプローチは入力トレースとその周波数を最先端技術よりも正確に表現できる小さなモデルを構築することができることを確認した。
- 参考スコア(独自算出の注目度): 8.196011179587304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Starting with a collection of traces generated by process executions, process discovery is the task of constructing a simple model that describes the process, where simplicity is often measured in terms of model size. The challenge of process discovery is that the process of interest is unknown, and that while the input traces constitute positive examples of process executions, no negative examples are available. Many commercial tools discover Directly-Follows Graphs, in which nodes represent the observable actions of the process, and directed arcs indicate execution order possibilities over the actions. We propose a new approach for discovering sound Directly-Follows Graphs that is grounded in grammatical inference over the input traces. To promote the discovery of small graphs that also describe the process accurately we design and evaluate a genetic algorithm that supports the convergence of the inference parameters to the areas that lead to the discovery of interesting models. Experiments over real-world datasets confirm that our new approach can construct smaller models that represent the input traces and their frequencies more accurately than the state-of-the-art technique. Reasoning over the frequencies of encoded traces also becomes possible, due to the stochastic semantics of the action graphs we propose, which, for the first time, are interpreted as models that describe the stochastic languages of action traces.
- Abstract(参考訳): プロセスの実行によって生成されるトレースのコレクションから始めると、プロセス発見はプロセスを記述するシンプルなモデルを構築するタスクである。
プロセス発見の課題は、プロセスが未知であり、入力トレースがプロセス実行の肯定的な例を構成するが、否定的な例は存在しないことである。
多くの商用ツールがDirectly-Follows Graphを発見し、ノードはプロセスの観測可能なアクションを表現する。
本稿では,入力トレースに対する文法的推論を基礎とした直接追従グラフの探索手法を提案する。
プロセスを正確に記述した小さなグラフの発見を促進するために、興味深いモデルの発見につながる領域への推論パラメータの収束を支援する遺伝的アルゴリズムを設計し、評価する。
実世界のデータセットに対する実験により、我々の新しいアプローチは入力トレースとその周波数を最先端技術よりも正確に表現できる小さなモデルを構築することができることを確認した。
符号化されたトレースの周波数に対する推論は、我々が提案するアクショングラフの確率的意味論により可能となり、これが初めて、アクショントレースの確率的言語を記述するモデルとして解釈される。
関連論文リスト
- Mining a Minimal Set of Behavioral Patterns using Incremental Evaluation [3.16536213610547]
行動パターンマイニングへの既存のアプローチには2つの制限がある。
まず、インクリメンタルな計算がパターン候補の生成にのみ組み込まれるため、スケーラビリティが制限される。
第二に、マイニングされたパターンに基づくプロセス分析は、実用的なアプリケーションシナリオで得られるパターンが圧倒的に多いため、限られた効果しか示さない。
論文 参考訳(メタデータ) (2024-02-05T11:41:37Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
次世代のスケーラブル因果発見手法の設計方法について述べる。
本稿では,スコアのヤコビアンを効率的に近似し,因果グラフを復元する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T21:34:46Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Process Discovery Using Graph Neural Networks [2.6381163133447836]
本稿では,グラフニューラルネットワークを用いたMLベースモデルDのトレーニング手法を提案する。
Dは与えられた入力イベントログをサウンドペトリネットに変換する。
合成された入力ログと出力モデルのペアによるDのトレーニングにより、Dは以前に見つからなかった合成イベントログと複数の実生活イベントログを音に変換することができることを示す。
論文 参考訳(メタデータ) (2021-09-13T10:04:34Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
プロセスの表現を学習することは、機械学習の新たな問題である。
本手法は,周期関数,3次元オブジェクト,動的プロセスの表現の学習に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T11:00:24Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z) - An Entropic Relevance Measure for Stochastic Conformance Checking in
Process Mining [9.302180124254338]
本稿では,各ログのトレースを圧縮するために必要な平均ビット数として計算された適合性チェックのためのエントロピー関連尺度を提案する。
エントロピー関連性はログのサイズで線形に計算可能であることを示し、産業環境における新しい手法の適用可能性を示す評価結果を提供する。
論文 参考訳(メタデータ) (2020-07-18T02:25:33Z) - Adversarial System Variant Approximation to Quantify Process Model
Generalization [2.538209532048867]
プロセスマイニングでは、プロセスモデルはイベントログから抽出され、複数の品質次元を用いて一般的に評価される。
この問題を解決するために,Adversarial System Variant Approximation (AVATAR)と呼ばれる新しいディープラーニングベースの手法が提案されている。
論文 参考訳(メタデータ) (2020-03-26T22:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。