Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
- URL: http://arxiv.org/abs/2411.15084v1
- Date: Fri, 22 Nov 2024 17:19:58 GMT
- Title: Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
- Authors: Lakshmikar R. Polamreddy, Kalyan Roy, Sheng-Han Yueh, Deepshikha Mahato, Shilpa Kuppili, Jialu Li, Youshan Zhang,
- Abstract summary: We propose a Leapfrog Latent Consistency Model (LLCM) that is distilled from a retrained diffusion model based on the collected MedImgs dataset.
Our model demonstrates state-of-the-art performance in generating medical images.
Our experimental results outperform those of existing models on unseen dog cardiac X-ray images.
- Score: 11.61653347709148
- License:
- Abstract: The scarcity of accessible medical image data poses a significant obstacle in effectively training deep learning models for medical diagnosis, as hospitals refrain from sharing their data due to privacy concerns. In response, we gathered a diverse dataset named MedImgs, which comprises over 250,127 images spanning 61 disease types and 159 classes of both humans and animals from open-source repositories. We propose a Leapfrog Latent Consistency Model (LLCM) that is distilled from a retrained diffusion model based on the collected MedImgs dataset, which enables our model to generate real-time high-resolution images. We formulate the reverse diffusion process as a probability flow ordinary differential equation (PF-ODE) and solve it in latent space using the Leapfrog algorithm. This formulation enables rapid sampling without necessitating additional iterations. Our model demonstrates state-of-the-art performance in generating medical images. Furthermore, our model can be fine-tuned with any custom medical image datasets, facilitating the generation of a vast array of images. Our experimental results outperform those of existing models on unseen dog cardiac X-ray images. Source code is available at https://github.com/lskdsjy/LeapfrogLCM.
Related papers
- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
We introduce our CROCODILE framework, showing how tools from causality can foster a model's robustness to domain shift.
We apply our method to multi-label lung disease classification from CXRs, utilizing over 750000 images.
arXiv Detail & Related papers (2024-08-09T09:08:06Z) - Temporal Evolution of Knee Osteoarthritis: A Diffusion-based Morphing Model for X-ray Medical Image Synthesis [6.014316825270666]
We introduce a novel deep-learning model designed to synthesize intermediate X-ray images between a patient's healthy knee and severe KOA stages.
During the testing phase, based on a healthy knee X-ray, the proposed model can produce a continuous and effective sequence of KOA X-ray images.
Our approach integrates diffusion and morphing modules, enabling the model to capture spatial morphing details between source and target knee X-ray images.
arXiv Detail & Related papers (2024-08-01T20:00:18Z) - DiNO-Diffusion. Scaling Medical Diffusion via Self-Supervised Pre-Training [0.0]
DiNO-Diffusion is a self-supervised method for training latent diffusion models (LDMs)
By eliminating the reliance on annotations, our training leverages over 868k unlabelled images from public chest X-Ray datasets.
It can be used to generate semantically-diverse synthetic datasets even from small data pools.
arXiv Detail & Related papers (2024-07-16T10:51:21Z) - ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images [44.107186498384024]
ImageFlowNet is a novel model designed to forecast disease trajectories from initial images while preserving spatial details.
We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features.
Our contributions include the development of ImageFlowNet, its theoretical, and empirical validation on real-world datasets.
arXiv Detail & Related papers (2024-06-20T23:51:32Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Sampling (A-DPS) is a generative model pre-trained on one type of corruption.
We show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
We extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements.
arXiv Detail & Related papers (2024-03-13T17:28:20Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
Inpainting algorithms are a subset of DL generative models that can alter one or more regions of an input image.
The performance of these algorithms is frequently suboptimal due to their limited output variety.
Denoising diffusion probabilistic models (DDPMs) are a recently introduced family of generative networks that can generate results of comparable quality to GANs.
arXiv Detail & Related papers (2022-10-21T17:13:14Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.