Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report
- URL: http://arxiv.org/abs/2210.12113v2
- Date: Thu, 30 Mar 2023 18:36:27 GMT
- Title: Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report
- Authors: Pouria Rouzrokh, Bardia Khosravi, Shahriar Faghani, Mana Moassefi,
Sanaz Vahdati, Bradley J. Erickson
- Abstract summary: Inpainting algorithms are a subset of DL generative models that can alter one or more regions of an input image.
The performance of these algorithms is frequently suboptimal due to their limited output variety.
Denoising diffusion probabilistic models (DDPMs) are a recently introduced family of generative networks that can generate results of comparable quality to GANs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the ever-increasing interest in applying deep learning (DL) models to
medical imaging, the typical scarcity and imbalance of medical datasets can
severely impact the performance of DL models. The generation of synthetic data
that might be freely shared without compromising patient privacy is a
well-known technique for addressing these difficulties. Inpainting algorithms
are a subset of DL generative models that can alter one or more regions of an
input image while matching its surrounding context and, in certain cases,
non-imaging input conditions. Although the majority of inpainting techniques
for medical imaging data use generative adversarial networks (GANs), the
performance of these algorithms is frequently suboptimal due to their limited
output variety, a problem that is already well-known for GANs. Denoising
diffusion probabilistic models (DDPMs) are a recently introduced family of
generative networks that can generate results of comparable quality to GANs,
but with diverse outputs. In this paper, we describe a DDPM to execute multiple
inpainting tasks on 2D axial slices of brain MRI with various sequences, and
present proof-of-concept examples of its performance in a variety of evaluation
scenarios. Our model and a public online interface to try our tool are
available at: https://github.com/Mayo-Radiology-Informatics-Lab/MBTI
Related papers
- Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
We propose an augmented DDGAN architecture, Ambient DDGAN (ADDGAN) for learning realistic SOMs from noisy image data.
The ability of the proposed ADDGAN to learn realistic SOMs from noisy image data is demonstrated.
arXiv Detail & Related papers (2025-01-31T12:40:43Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
This paper investigates a new paradigm for leveraging generative models in medical applications.
We propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - A 3D generative model of pathological multi-modal MR images and
segmentations [3.4806591877889375]
We propose brainSPADE3D, a 3D generative model for brain MRI and associated segmentations.
The proposed joint imaging-segmentation generative model is shown to generate high-fidelity synthetic images and associated segmentations.
We demonstrate how the model can alleviate issues with segmentation model performance when unexpected pathologies are present in the data.
arXiv Detail & Related papers (2023-11-08T09:36:37Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
We propose an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices.
The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain.
Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models.
arXiv Detail & Related papers (2023-06-02T14:17:37Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.