論文の概要: Memory-Driven Metaheuristics: Improving Optimization Performance
- arxiv url: http://arxiv.org/abs/2411.15151v1
- Date: Thu, 07 Nov 2024 13:27:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:39:32.427038
- Title: Memory-Driven Metaheuristics: Improving Optimization Performance
- Title(参考訳): メモリ駆動メタヒューリスティック:最適化性能の改善
- Authors: Salar Farahmand-Tabar,
- Abstract要約: この章ではメタヒューリスティックアルゴリズムにおける記憶の重要性について論じる。
メモリメカニズムの有効性に影響を与える重要な要因について論じる。
メモリ機構をメタヒューリスティックなアルゴリズムにどのように組み込むのかを包括的に分析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Metaheuristics are stochastic optimization algorithms that mimic natural processes to find optimal solutions to complex problems. The success of metaheuristics largely depends on the ability to effectively explore and exploit the search space. Memory mechanisms have been introduced in several popular metaheuristic algorithms to enhance their performance. This chapter explores the significance of memory in metaheuristic algorithms and provides insights from well-known algorithms. The chapter begins by introducing the concept of memory, and its role in metaheuristic algorithms. The key factors influencing the effectiveness of memory mechanisms are discussed, such as the size of the memory, the information stored in memory, and the rate of information decay. A comprehensive analysis of how memory mechanisms are incorporated into popular metaheuristic algorithms is presented and concludes by highlighting the importance of memory in metaheuristic performance and providing future research directions for improving memory mechanisms. The key takeaways are that memory mechanisms can significantly enhance the performance of metaheuristics by enabling them to explore and exploit the search space effectively and efficiently, and that the choice of memory mechanism should be tailored to the problem domain and the characteristics of the search space.
- Abstract(参考訳): メタヒューリスティックス(Metaheuristics)は、複雑な問題に対する最適解を見つけるために自然過程を模倣する確率最適化アルゴリズムである。
メタヒューリスティックスの成功は、探索空間を効果的に探索し活用する能力に大きく依存している。
メモリ機構は、その性能を高めるために、いくつかの一般的なメタヒューリスティックアルゴリズムで導入された。
この章はメタヒューリスティックアルゴリズムにおけるメモリの重要性を探求し、よく知られたアルゴリズムからの洞察を提供する。
この章は、メモリの概念とメタヒューリスティックアルゴリズムにおけるその役割の導入から始まる。
メモリのサイズ、メモリに格納されている情報、情報減衰率など、メモリメカニズムの有効性に影響を与える重要な要因について論じる。
メモリメカニズムをメタヒューリスティックなアルゴリズムにどのように組み込むのかを包括的に分析し、メタヒューリスティックな性能におけるメモリの重要性を強調し、メモリメカニズムを改善するための今後の研究方向を提供することで結論付ける。
重要なポイントは、メモリ機構が探索空間を効率的に効率的に探索・活用できるようにすることでメタヒューリスティックスの性能を大幅に向上させることであり、メモリ機構の選択は問題領域と探索空間の特徴に合わせて調整されるべきである。
関連論文リスト
- Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
メモリは、大規模言語モデル(LLM)ベースのエージェントを支える、AIシステムの基本コンポーネントである。
コンソリデーション、更新、インデックス付け、フォッティング、検索、圧縮の6つの基本的なメモリ操作を紹介します。
この調査は、AIのメモリに関する研究、ベンチマークデータセット、ツールに関する構造化された動的視点を提供する。
論文 参考訳(メタデータ) (2025-05-01T17:31:33Z) - Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
「我々は、テキスト・メモリ利用の尺度を策定する。」
この計量は、textitinput-invariant および textitinput-variant linear operator を持つシステムの基本的なクラスに適合する。
論文 参考訳(メタデータ) (2025-04-28T08:12:30Z) - From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
メモリは情報をエンコードし、保存し、検索するプロセスである。
大規模言語モデル(LLM)の時代において、メモリとは、AIシステムが過去のインタラクションからの情報を保持し、リコールし、使用し、将来の応答とインタラクションを改善する能力である。
論文 参考訳(メタデータ) (2025-04-22T15:05:04Z) - Cognitive Memory in Large Language Models [8.059261857307881]
本稿では,Large Language Models (LLMs) における記憶機構について検討し,文脈に富む応答の重要性,幻覚の減少,効率の向上などを強調した。
メモリは、インプットプロンプト、短期記憶処理の即時コンテキスト、外部データベースや構造を介して実装された長期記憶に対応して、インプットプロンプト、短期記憶、長期記憶に分類する。
論文 参考訳(メタデータ) (2025-04-03T09:58:19Z) - Graceful forgetting: Memory as a process [0.0]
メモリの論理的理論が提案され、バウンドストレージ空間内での入力にどのように対応できるかを説明する。
この理論は、記憶に関する広範な知識を理解し、機能的および機械的用語における記憶の理解に近づけるための助けとなることを意図している。
論文 参考訳(メタデータ) (2025-02-16T12:46:34Z) - Spatially-Aware Transformer for Embodied Agents [20.498778205143477]
本稿では,空間情報を含む空間認識変換器モデルの利用について検討する。
メモリ利用効率が向上し,様々な場所中心の下流タスクにおいて精度が向上することが実証された。
また,強化学習に基づくメモリ管理手法であるAdaptive Memory Allocatorを提案する。
論文 参考訳(メタデータ) (2024-02-23T07:46:30Z) - Constant Memory Attention Block [74.38724530521277]
Constant Memory Attention Block (CMAB) は、新しい汎用アテンションブロックであり、その出力を一定メモリで計算し、一定計算で更新を実行する。
提案手法は,メモリ効率を著しく向上しつつ,最先端技術と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T22:41:58Z) - Memory Efficient Neural Processes via Constant Memory Attention Block [55.82269384896986]
CMANP(Constant Memory Attentive Neural Processs)は、NPの変種である。
我々は,CMANPが従来の手法よりもはるかにメモリ効率が良く,NPベンチマークで最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2023-05-23T23:10:19Z) - Evolutionary Design of the Memory Subsystem [2.378428291297535]
本稿では,メモリサブシステム全体の最適化を,単一の方法論として統合した3つのアプローチで解決する。
そこで本研究では,メモリシミュレータとプロファイリングツールを組み合わせた進化的アルゴリズムを提案する。
また、我々の提案をよく知られたベンチマークアプリケーションを用いて評価する実験的な経験も提供する。
論文 参考訳(メタデータ) (2023-03-07T10:45:51Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
本稿ではメタラーニングフレームワークに基づくセマンティックセグメンテーションのための新しいメモリ誘導ドメイン一般化手法を提案する。
本手法は,セマンティッククラスの概念的知識を,ドメインを超えて一定であるカテゴリ記憶に抽象化する。
論文 参考訳(メタデータ) (2022-04-07T17:34:01Z) - Memory and attention in deep learning [19.70919701635945]
マシンのメモリ構成は避けられない。
ディープラーニングにおけるメモリモデリングの最近の進歩は、外部メモリ構築を中心に展開されている。
この論文の目的は、深層学習における記憶と注意に対する理解を深めることである。
論文 参考訳(メタデータ) (2021-07-03T09:21:13Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
エピソディックメモリとセマンティックメモリは、人間のメモリモデルの重要なコンポーネントです。
我々は、エピソードメモリとセマンティックメモリのギャップを埋める新しい原理ベイズメモリ割り当てスキームを開発しました。
この割り当て方式がメモリ条件画像生成の性能を向上させることを実証する。
論文 参考訳(メタデータ) (2021-02-20T18:40:40Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
我々はメタラーニングに変分セマンティックメモリを導入し、数ショットラーニングのための長期的知識を得る。
セマンティックメモリはスクラッチから成長し、経験したタスクから情報を吸収することで徐々に統合される。
アドレスコンテンツから潜在記憶変数の変動推論としてメモリリコールを定式化する。
論文 参考訳(メタデータ) (2020-10-20T15:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。