論文の概要: Cognitive Memory in Large Language Models
- arxiv url: http://arxiv.org/abs/2504.02441v2
- Date: Thu, 24 Apr 2025 01:47:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.370615
- Title: Cognitive Memory in Large Language Models
- Title(参考訳): 大規模言語モデルにおける認知記憶
- Authors: Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, Yong Wu,
- Abstract要約: 本稿では,Large Language Models (LLMs) における記憶機構について検討し,文脈に富む応答の重要性,幻覚の減少,効率の向上などを強調した。
メモリは、インプットプロンプト、短期記憶処理の即時コンテキスト、外部データベースや構造を介して実装された長期記憶に対応して、インプットプロンプト、短期記憶、長期記憶に分類する。
- 参考スコア(独自算出の注目度): 8.059261857307881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) における記憶機構について検討し,文脈に富む応答の重要性,幻覚の減少,効率の向上を強調した。
メモリは、インプットプロンプト、短期記憶処理の即時コンテキスト、外部データベースや構造を介して実装された長期記憶に対応して、インプットプロンプト、短期記憶、長期記憶に分類する。
テキストベースのメモリセクションは、取得(選択と要約)、管理(更新、アクセス、保存、解決)、利用(全文検索、SQLクエリ、セマンティック検索)をカバーする。
KVキャッシュベースのメモリセクションでは、オフロードや共有アテンション機構といった管理戦略とともに、選択方法(正規性に基づく要約、スコアベースのアプローチ、特別なトークン埋め込み)と圧縮技術(ローランク圧縮、KVマージ、マルチモーダル圧縮)について議論している。
パラメータベースのメモリ手法 (LoRA, TTT, MoE) は、メモリをモデルパラメータに変換し、効率を高める一方、隠れ状態ベースのメモリアプローチ(チャンク機構、リカレントトランスフォーマー、Mambaモデル)は、RNN隠れ状態と現在の方法を組み合わせることで、長文処理を改善する。
全体として,LLM記憶機構の総合的解析を行い,その意義と今後の研究方向性を明らかにする。
関連論文リスト
- Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
メモリは、大規模言語モデル(LLM)ベースのエージェントを支える、AIシステムの基本コンポーネントである。
コンソリデーション、更新、インデックス付け、フォッティング、検索、圧縮の6つの基本的なメモリ操作を紹介します。
この調査は、AIのメモリに関する研究、ベンチマークデータセット、ツールに関する構造化された動的視点を提供する。
論文 参考訳(メタデータ) (2025-05-01T17:31:33Z) - Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
「我々は、テキスト・メモリ利用の尺度を策定する。」
この計量は、textitinput-invariant および textitinput-variant linear operator を持つシステムの基本的なクラスに適合する。
論文 参考訳(メタデータ) (2025-04-28T08:12:30Z) - R$^3$Mem: Bridging Memory Retention and Retrieval via Reversible Compression [24.825945729508682]
情報保持と検索の両方を最適化するメモリネットワークであるR$3$Memを提案する。
R$3$Memは、仮想メモリトークンを使用して無限に長い履歴を圧縮およびエンコードし、階層的な圧縮戦略によってさらに強化される。
実験により,長文言語モデリングおよび検索強化生成タスクにおいて,メモリ設計が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2025-02-21T21:39:00Z) - On Memory Construction and Retrieval for Personalized Conversational Agents [69.46887405020186]
本稿では,セグメンテーションモデルを導入し,セグメントレベルでメモリバンクを構築するセグメンテーション手法であるSeComを提案する。
実験結果から,SeComは長期会話ベンチマークLOCOMOとLong-MT-Bench+のベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2025-02-08T14:28:36Z) - Memory-Driven Metaheuristics: Improving Optimization Performance [0.0]
この章ではメタヒューリスティックアルゴリズムにおける記憶の重要性について論じる。
メモリメカニズムの有効性に影響を与える重要な要因について論じる。
メモリ機構をメタヒューリスティックなアルゴリズムにどのように組み込むのかを包括的に分析する。
論文 参考訳(メタデータ) (2024-11-07T13:27:03Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
本稿では,認知心理学のワーキングメモリフレームワークを大規模言語モデル(LLM)に適用する可能性について検討する。
エピソード間の記憶を維持するために、集中型ワーキングメモリハブとエピソディックバッファアクセスを取り入れた革新的なモデルが提案されている。
このアーキテクチャは、複雑なタスクと協調シナリオの間のニュアンス付きコンテキスト推論に対して、より継続的なものを提供することを目的としている。
論文 参考訳(メタデータ) (2023-12-22T05:59:00Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
右側トークンへの漸進的参加により再帰記憶を向上させるLook-Ahead Memory(LaMemo)を提案する。
LaMemoは、メモリ長に比例した追加のオーバーヘッドで、双方向の注意とセグメントの再発を受け入れる。
広く使われている言語モデリングベンチマークの実験は、異なる種類のメモリを備えたベースラインよりも優れていることを示した。
論文 参考訳(メタデータ) (2022-04-15T06:11:25Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
エピソディックメモリとセマンティックメモリは、人間のメモリモデルの重要なコンポーネントです。
我々は、エピソードメモリとセマンティックメモリのギャップを埋める新しい原理ベイズメモリ割り当てスキームを開発しました。
この割り当て方式がメモリ条件画像生成の性能を向上させることを実証する。
論文 参考訳(メタデータ) (2021-02-20T18:40:40Z) - Distributed Associative Memory Network with Memory Refreshing Loss [5.5792083698526405]
メモリリフレッシングロス(MRL)を用いた分散連想メモリアーキテクチャ(DAM)について紹介する。
人間の脳の動作にインスパイアされた私たちのフレームワークは、複数のメモリブロックにまたがる分散表現でデータをエンコードします。
MRLにより、記憶されたメモリコンテンツから入力データを再生することにより、MANNは、入力データとタスク目的との関連性を強化することができる。
論文 参考訳(メタデータ) (2020-07-21T07:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。