論文の概要: Preliminary Evaluation of the Test-Time Training Layers in Recommendation System (Student Abstract)
- arxiv url: http://arxiv.org/abs/2411.15186v1
- Date: Tue, 19 Nov 2024 05:46:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:06.547060
- Title: Preliminary Evaluation of the Test-Time Training Layers in Recommendation System (Student Abstract)
- Title(参考訳): 推薦システムにおける試験時間訓練層の予備評価(学生要約)
- Authors: Tianyu Zhan, Zheqi Lv, Shengyu Zhang, Jiwei Li,
- Abstract要約: 我々は,TT-Linear を特徴抽出層として利用するモデル TTT4Rec を開発した。
複数のデータセットを対象としたテストでは、TTT4Recはベースモデルとして、同じ環境で他のベースラインモデルと相容れない、あるいは超える性能を示している。
- 参考スコア(独自算出の注目度): 15.021913498419368
- License:
- Abstract: This paper explores the application and effectiveness of Test-Time Training (TTT) layers in improving the performance of recommendation systems. We developed a model, TTT4Rec, utilizing TTT-Linear as the feature extraction layer. Our tests across multiple datasets indicate that TTT4Rec, as a base model, performs comparably or even surpasses other baseline models in similar environments.
- Abstract(参考訳): 本稿では,テストタイム・トレーニング(TTT)レイヤのレコメンデーションシステムの性能向上への応用と有効性について検討する。
我々は,TT-Linear を特徴抽出層として利用した TTT4Rec モデルを開発した。
複数のデータセットを対象としたテストでは、TTT4Recはベースモデルとして、同じ環境で他のベースラインモデルと相容れない、あるいは超える性能を示している。
関連論文リスト
- TTT4Rec: A Test-Time Training Approach for Rapid Adaption in Sequential Recommendation [11.15566809055308]
テスト時間トレーニング(TTT)は、推論中に自己教師付き学習を使用してモデルパラメータを動的に更新することで、新しいアプローチを提供する。
TTT4Recは,動的ユーザの振る舞いをよりよく捉えるためにTTTを統合したシーケンシャルレコメンデーションフレームワークである。
我々は、TTT4Recを3つの広く使われているレコメンデーションデータセットで評価し、最先端のモデルと同等以上のパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2024-09-27T21:14:23Z) - Dual Test-time Training for Out-of-distribution Recommender System [91.15209066874694]
DT3ORと呼ばれるOODレコメンデーションのための新しいDual Test-Time-Trainingフレームワークを提案する。
DT3ORでは、テスト期間中にモデル適応機構を導入し、リコメンデーションモデルを慎重に更新する。
我々の知る限りでは、テストタイムトレーニング戦略を通じてOODレコメンデーションに対処する最初の研究である。
論文 参考訳(メタデータ) (2024-07-22T13:27:51Z) - Test-Time Training on Graphs with Large Language Models (LLMs) [68.375487369596]
グラフニューラルネットワーク(GNN)をトレーニングするための有望なアプローチとして,TTT(Test-Time Training)が提案されている。
テキスト分散グラフ(TAG)上でのLLM(Large Language Models)の優れたアノテーション能力に着想を得て,LLMをアノテータとしてグラフ上でのテスト時間トレーニングを強化することを提案する。
2段階のトレーニング戦略は、限定的でノイズの多いラベルでテストタイムモデルを調整するように設計されている。
論文 参考訳(メタデータ) (2024-04-21T08:20:02Z) - Test-Time Training on Video Streams [66.63237260332984]
以前の作業では、テスト時にトレーニングされたモデルをさらに改善するための一般的なフレームワークとして、テスト時間トレーニング(TTT)が確立されていた。
TTTをストリーミング設定に拡張し、複数のテストインスタンスが時間順に到着します。
オンラインTTTは、現実世界の3つのデータセット上で、4つのタスクで固定モデルベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2023-07-11T05:17:42Z) - Improved Test-Time Adaptation for Domain Generalization [48.239665441875374]
テストタイムトレーニング(TTT)は、学習したモデルにテストデータを適用する。
この作業は2つの主な要因に対処する: テストフェーズ中にアップデートする信頼性のあるパラメータを更新および識別するための適切な補助的TTTタスクを選択する。
トレーニングされたモデルに適応パラメータを追加し、テストフェーズでのみ適応パラメータを更新することを提案する。
論文 参考訳(メタデータ) (2023-04-10T10:12:38Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
テスト時間適応(TTA)は、事前訓練されたモデルをテスト中に、予測する前にラベルのないデータに適応する可能性がある。
TTAはテスト時間領域適応、テスト時間バッチ適応、オンラインテスト時間適応といったテストデータの形態に基づいて、いくつかの異なるグループに分類される。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST)は、あるソースデータとテスト時の新しいデータ分散に基づいてトレーニングされたモデルを入力する技術である。
また,TeSTを用いたモデルでは,ベースラインテスト時間適応アルゴリズムよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2022-09-23T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。