Multimodal large language model for wheat breeding: a new exploration of smart breeding
- URL: http://arxiv.org/abs/2411.15203v1
- Date: Wed, 20 Nov 2024 04:47:42 GMT
- Title: Multimodal large language model for wheat breeding: a new exploration of smart breeding
- Authors: Guofeng Yang, Yu Li, Yong He, Zhenjiang Zhou, Lingzhen Ye, Hui Fang, Yiqi Luo, Xuping Feng,
- Abstract summary: Multidisciplinary nature of breeding has brought technical barriers and efficiency challenges to knowledge mining.
This study used supervised fine-tuning (SFT), retrieval-augmented generation (RAG), and reinforcement learning from human feedback (RLHF) technologies to inject cross-domain knowledge into MLLMs.
The WBLM can generate professional decision support answers for phenotyping estimation, environmental stress assessment, target germplasm screening, cultivation technique recommendation, and seed price query tasks.
- Score: 13.849056190321189
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: UAV remote sensing technology has become a key technology in crop breeding, which can achieve high-throughput and non-destructive collection of crop phenotyping data. However, the multidisciplinary nature of breeding has brought technical barriers and efficiency challenges to knowledge mining. Therefore, it is important to develop a smart breeding goal tool to mine cross-domain multimodal data. Based on different pre-trained open-source multimodal large language models (MLLMs) (e.g., Qwen-VL, InternVL, Deepseek-VL), this study used supervised fine-tuning (SFT), retrieval-augmented generation (RAG), and reinforcement learning from human feedback (RLHF) technologies to inject cross-domain knowledge into MLLMs, thereby constructing multiple multimodal large language models for wheat breeding (WBLMs). The above WBLMs were evaluated using the newly created evaluation benchmark in this study. The results showed that the WBLM constructed using SFT, RAG and RLHF technologies and InternVL2-8B has leading performance. Then, subsequent experiments were conducted using the WBLM. Ablation experiments indicated that the combination of SFT, RAG, and RLHF technologies can improve the overall generation performance, enhance the generated quality, balance the timeliness and adaptability of the generated answer, and reduce hallucinations and biases. The WBLM performed best in wheat yield prediction using cross-domain data (remote sensing, phenotyping, weather, germplasm) simultaneously, with R2 and RMSE of 0.821 and 489.254 kg/ha, respectively. Furthermore, the WBLM can generate professional decision support answers for phenotyping estimation, environmental stress assessment, target germplasm screening, cultivation technique recommendation, and seed price query tasks.
Related papers
- Discrete Diffusion in Large Language and Multimodal Models: A Survey [56.31088116526825]
We provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs)<n>Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm.<n>We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models.
arXiv Detail & Related papers (2025-06-16T17:59:08Z) - Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
We present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization.
In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate.
arXiv Detail & Related papers (2025-03-05T13:47:55Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - On Domain-Adaptive Post-Training for Multimodal Large Language Models [72.67107077850939]
This paper systematically investigates domain adaptation of MLLMs via post-training.<n>We focus on data synthesis, training pipeline, and task evaluation.<n>We conduct experiments in high-impact domains such as biomedicine, food, and remote sensing.
arXiv Detail & Related papers (2024-11-29T18:42:28Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Combining Domain-Specific Models and LLMs for Automated Disease Phenotyping from Survey Data [0.0]
This pilot study investigated the potential of combining a domain-specific model, BERN2, with large language models (LLMs) to enhance automated phenotyping from research survey data.
We employed BERN2, a named entity recognition and normalization model, to extract information from the ORIGINS survey data.
BERN2 demonstrated high performance in extracting and normalizing disease mentions, and the integration of LLMs, particularly with Few Shot Inference and RAG orchestration, further improved accuracy.
arXiv Detail & Related papers (2024-10-28T02:55:03Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models.
This paper introduces THaMES, an integrated framework and library addressing this gap.
THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-09-17T16:55:25Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction [16.99449054451577]
We propose a new LSTM autoencoder-based model for barley genotype-to-phenotype prediction, specifically for flowering time and grain yield estimation.
Our model outperformed the other baseline methods, demonstrating its potential in handling complex high-dimensional agricultural datasets.
arXiv Detail & Related papers (2024-07-21T16:07:43Z) - Geneverse: A collection of Open-source Multimodal Large Language Models for Genomic and Proteomic Research [20.285114234576298]
Large language models (LLMs) are promising for biomedical and healthcare research.
We propose a collection of finetuned LLMs and multimodal LLMs (MLLMs) for three novel tasks in genomics and proteomic research.
The models in Geneverse are trained and evaluated based on domain-specific datasets.
We demonstrate that adapted LLMs and MLLMs perform well for these tasks and may outperform closed-source large-scale models.
arXiv Detail & Related papers (2024-06-21T14:19:10Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA)
We also introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML)
Our comparative analyses show that SH-RML offers better uncertainty compared to conventional ESMDA for the case study.
arXiv Detail & Related papers (2024-02-09T00:24:46Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Pre-trained Language Models for Keyphrase Generation: A Thorough
Empirical Study [76.52997424694767]
We present an in-depth empirical study of keyphrase extraction and keyphrase generation using pre-trained language models.
We show that PLMs have competitive high-resource performance and state-of-the-art low-resource performance.
Further results show that in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models.
arXiv Detail & Related papers (2022-12-20T13:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.