Faithful Label-free Knowledge Distillation
- URL: http://arxiv.org/abs/2411.15239v1
- Date: Fri, 22 Nov 2024 01:48:44 GMT
- Title: Faithful Label-free Knowledge Distillation
- Authors: Evelyn J. Mannix, Liam Hodgkinson, Howard Bondell,
- Abstract summary: This paper presents a label-free knowledge distillation approach called Teacher in the Middle (TinTeM)
It produces a more faithful student, which better replicates the behavior of the teacher network across a range of benchmarks testing model robustness, generalisability and out-of-distribution detection.
- Score: 8.572967695281054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation approaches are model compression techniques, with the goal of training a highly performant student model by using a teacher network that is larger or contains a different inductive bias. These approaches are particularly useful when applied to large computer vision foundation models, which can be compressed into smaller variants that retain desirable properties such as improved robustness. This paper presents a label-free knowledge distillation approach called Teacher in the Middle (TinTeM), which improves on previous methods by learning an approximately orthogonal mapping from the latent space of the teacher to the student network. This produces a more faithful student, which better replicates the behavior of the teacher network across a range of benchmarks testing model robustness, generalisability and out-of-distribution detection. It is further shown that knowledge distillation with TinTeM on task specific datasets leads to more accurate models with greater generalisability and OOD detection performance, and that this technique provides a competitive pathway for training highly performant lightweight models on small datasets.
Related papers
- Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.
Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - ReffAKD: Resource-efficient Autoencoder-based Knowledge Distillation [3.301728339780329]
We propose an innovative method to boost Knowledge Distillation efficiency without the need for resource-heavy teacher models.
In our work, we propose an efficient method for generating soft labels, thereby eliminating the need for a large teacher model.
Our experiments on various datasets, including CIFAR-100, Tiny Imagenet, and Fashion MNIST, demonstrate the superior resource efficiency of our approach.
arXiv Detail & Related papers (2024-04-15T15:54:30Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - Distilling Out-of-Distribution Robustness from Vision-Language
Foundation Models [40.885755686727855]
We propose a conceptually simple and lightweight framework for improving the robustness of vision models.
We show strong gains in out-of-distribution robustness when distilling from pretrained foundation models.
We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting.
arXiv Detail & Related papers (2023-11-02T17:55:13Z) - One-for-All: Bridge the Gap Between Heterogeneous Architectures in
Knowledge Distillation [69.65734716679925]
Knowledge distillation has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme.
Most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family.
We propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures.
arXiv Detail & Related papers (2023-10-30T11:13:02Z) - Improving Knowledge Distillation via Regularizing Feature Norm and
Direction [16.98806338782858]
Knowledge distillation (KD) exploits a large well-trained model (i.e., teacher) to train a small student model on the same dataset for the same task.
Treating teacher features as knowledge, prevailing methods of knowledge distillation train student by aligning its features with the teacher's, e.g., by minimizing the KL-divergence between their logits or L2 distance between their intermediate features.
While it is natural to believe that better alignment of student features to the teacher better distills teacher knowledge, simply forcing this alignment does not directly contribute to the student's performance, e.g.
arXiv Detail & Related papers (2023-05-26T15:05:19Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - DisWOT: Student Architecture Search for Distillation WithOut Training [0.0]
We explore a novel training-free framework to search for the best student architectures for a given teacher.
Our work first empirically show that the optimal model under vanilla training cannot be the winner in distillation.
Our experiments on CIFAR, ImageNet and NAS-Bench-201 demonstrate that our technique achieves state-of-the-art results on different search spaces.
arXiv Detail & Related papers (2023-03-28T01:58:45Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - Efficient Knowledge Distillation from Model Checkpoints [36.329429655242535]
We show that a weak snapshot ensemble of several intermediate models from a same training trajectory can outperform a strong ensemble of independently trained and fully converged models.
We propose an optimal intermediate teacher selection algorithm based on maximizing the total task-related mutual information.
arXiv Detail & Related papers (2022-10-12T17:55:30Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - A Studious Approach to Semi-Supervised Learning [0.0]
This paper is an ablation study of distillation in a semi-supervised setting.
It reduces the number of parameters of the model but can achieve this while improving the performance.
This brings forward the potential of distillation as an effective solution to enhance performance in semi-supervised computer vision tasks.
arXiv Detail & Related papers (2021-09-18T12:48:47Z) - Beyond Self-Supervision: A Simple Yet Effective Network Distillation
Alternative to Improve Backbones [40.33419553042038]
We propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models.
Our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model.
We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved.
arXiv Detail & Related papers (2021-03-10T09:32:44Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.