ReffAKD: Resource-efficient Autoencoder-based Knowledge Distillation
- URL: http://arxiv.org/abs/2404.09886v1
- Date: Mon, 15 Apr 2024 15:54:30 GMT
- Title: ReffAKD: Resource-efficient Autoencoder-based Knowledge Distillation
- Authors: Divyang Doshi, Jung-Eun Kim,
- Abstract summary: We propose an innovative method to boost Knowledge Distillation efficiency without the need for resource-heavy teacher models.
In our work, we propose an efficient method for generating soft labels, thereby eliminating the need for a large teacher model.
Our experiments on various datasets, including CIFAR-100, Tiny Imagenet, and Fashion MNIST, demonstrate the superior resource efficiency of our approach.
- Score: 3.301728339780329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this research, we propose an innovative method to boost Knowledge Distillation efficiency without the need for resource-heavy teacher models. Knowledge Distillation trains a smaller ``student'' model with guidance from a larger ``teacher'' model, which is computationally costly. However, the main benefit comes from the soft labels provided by the teacher, helping the student grasp nuanced class similarities. In our work, we propose an efficient method for generating these soft labels, thereby eliminating the need for a large teacher model. We employ a compact autoencoder to extract essential features and calculate similarity scores between different classes. Afterward, we apply the softmax function to these similarity scores to obtain a soft probability vector. This vector serves as valuable guidance during the training of the student model. Our extensive experiments on various datasets, including CIFAR-100, Tiny Imagenet, and Fashion MNIST, demonstrate the superior resource efficiency of our approach compared to traditional knowledge distillation methods that rely on large teacher models. Importantly, our approach consistently achieves similar or even superior performance in terms of model accuracy. We also perform a comparative study with various techniques recently developed for knowledge distillation showing our approach achieves competitive performance with using significantly less resources. We also show that our approach can be easily added to any logit based knowledge distillation method. This research contributes to making knowledge distillation more accessible and cost-effective for practical applications, making it a promising avenue for improving the efficiency of model training. The code for this work is available at, https://github.com/JEKimLab/ReffAKD.
Related papers
- Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - Lightweight Self-Knowledge Distillation with Multi-source Information
Fusion [3.107478665474057]
Knowledge Distillation (KD) is a powerful technique for transferring knowledge between neural network models.
We propose a lightweight SKD framework that utilizes multi-source information to construct a more informative teacher.
We validate the performance of the proposed DRG, DSR, and their combination through comprehensive experiments on various datasets and models.
arXiv Detail & Related papers (2023-05-16T05:46:31Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Teaching What You Should Teach: A Data-Based Distillation Method [20.595460553747163]
We introduce the "Teaching what you Should Teach" strategy into a knowledge distillation framework.
We propose a data-based distillation method named "TST" that searches for desirable augmented samples to assist in distilling more efficiently and rationally.
To be specific, we design a neural network-based data augmentation module with priori bias, which assists in finding what meets the teacher's strengths but the student's weaknesses.
arXiv Detail & Related papers (2022-12-11T06:22:14Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - Extracting knowledge from features with multilevel abstraction [3.4443503349903124]
Self-knowledge distillation (SKD) aims at transferring the knowledge from a large teacher model to a small student model.
In this paper, we purpose a novel SKD method in a different way from the main stream methods.
Experiments and ablation studies show its great effectiveness and generalization on various kinds of tasks.
arXiv Detail & Related papers (2021-12-04T02:25:46Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - On the Orthogonality of Knowledge Distillation with Other Techniques:
From an Ensemble Perspective [34.494730096460636]
We show that knowledge distillation is a powerful apparatus for practical deployment of efficient neural network.
We also introduce ways to integrate knowledge distillation with other methods effectively.
arXiv Detail & Related papers (2020-09-09T06:14:59Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.