EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality
- URL: http://arxiv.org/abs/2411.15241v2
- Date: Sat, 22 Mar 2025 02:46:19 GMT
- Title: EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality
- Authors: Sanghyeok Lee, Joonmyung Choi, Hyunwoo J. Kim,
- Abstract summary: We introduce Efficient Vision Mamba, a novel architecture built on hidden state mixer-based state space duality (HSM-SSD)<n>We propose multi-stage hidden state fusion to reinforce the representation power of hidden states and provide the design to alleviate the bottleneck caused by the memory-bound operations.<n>As a result, the EfficientViM family achieves a new state-of-the-art speed-accuracy trade-off on ImageNet-1k, offering up to a 0.7% performance improvement over the second-best model SHViT with faster speed.
- Score: 16.576495786546612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the deployment of neural networks in resource-constrained environments, prior works have built lightweight architectures with convolution and attention for capturing local and global dependencies, respectively. Recently, the state space model (SSM) has emerged as an effective operation for global interaction with its favorable linear computational cost in the number of tokens. To harness the efficacy of SSM, we introduce Efficient Vision Mamba (EfficientViM), a novel architecture built on hidden state mixer-based state space duality (HSM-SSD) that efficiently captures global dependencies with further reduced computational cost. With the observation that the runtime of the SSD layer is driven by the linear projections on the input sequences, we redesign the original SSD layer to perform the channel mixing operation within compressed hidden states in the HSM-SSD layer. Additionally, we propose multi-stage hidden state fusion to reinforce the representation power of hidden states and provide the design to alleviate the bottleneck caused by the memory-bound operations. As a result, the EfficientViM family achieves a new state-of-the-art speed-accuracy trade-off on ImageNet-1k, offering up to a 0.7% performance improvement over the second-best model SHViT with faster speed. Further, we observe significant improvements in throughput and accuracy compared to prior works, when scaling images or employing distillation training. Code is available at https://github.com/mlvlab/EfficientViM.
Related papers
- DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)
Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.
Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables [60.95483707212802]
DnLUT is an ultra-efficient lookup table-based framework that achieves high-quality color image denoising with minimal resource consumption.
Our key innovation lies in two complementary components: a Pairwise Channel Mixer (PCM) that effectively captures inter-channel correlations and spatial dependencies in parallel, and a novel L-shaped convolution design that maximizes receptive field coverage.
By converting these components into optimized lookup tables post-training, DnLUT achieves remarkable efficiency - requiring only 500KB storage and 0.1% energy consumption compared to its CNN contestant DnCNN, while delivering 20X faster inference.
arXiv Detail & Related papers (2025-03-20T08:15:29Z) - Parallel Sequence Modeling via Generalized Spatial Propagation Network [80.66202109995726]
Generalized Spatial Propagation Network (GSPN) is a new attention mechanism for optimized vision tasks that inherently captures 2D spatial structures.
GSPN overcomes limitations by directly operating on spatially coherent image data and forming dense pairwise connections through a line-scan approach.
GSPN achieves superior spatial fidelity and state-of-the-art performance in vision tasks, including ImageNet classification, class-guided image generation, and text-to-image generation.
arXiv Detail & Related papers (2025-01-21T18:56:19Z) - CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
We propose a new detextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) mechanism.
We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies.
By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy.
arXiv Detail & Related papers (2024-11-25T07:56:13Z) - Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos [0.2023650687546586]
We propose a highly efficient unsupervised framework for SVMOD.
We show that our method can not only process 9 frames per second on 1024x images but also achieve foreground-art performance.
arXiv Detail & Related papers (2024-11-24T16:06:42Z) - Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - VSSD: Vision Mamba with Non-Causal State Space Duality [26.96416515847115]
State Space Models (SSMs) have gained prominence in vision tasks as they offer linear computational complexity.
We introduce Visual State Space Duality (VSSD) model, which has a non-causal format of SSD.
We conduct extensive experiments on various benchmarks including image classification, detection, and segmentation, where VSSD surpasses existing state-of-the-art SSM-based models.
arXiv Detail & Related papers (2024-07-26T07:16:52Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
We propose DVMSR, a novel lightweight Image SR network that incorporates Vision Mamba and a distillation strategy.
Our proposed DVMSR can outperform state-of-the-art efficient SR methods in terms of model parameters.
arXiv Detail & Related papers (2024-05-05T17:34:38Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
arXiv Detail & Related papers (2024-04-22T05:12:11Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
This work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba.
Our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features.
Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks.
arXiv Detail & Related papers (2024-03-15T02:48:47Z) - VMamba: Visual State Space Model [92.83984290020891]
VMamba is a vision backbone that works in linear time complexity.
At the core of VMamba lies a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan (SS2D) module.
arXiv Detail & Related papers (2024-01-18T17:55:39Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
Event cameras detect changes in per-pixel intensity to generate asynchronous event streams.
They offer great potential for accurate semantic map retrieval in real-time autonomous systems.
Existing implementations for event segmentation suffer from sub-based performance.
We propose hybrid end-to-end learning framework HALSIE to reduce inference cost by up to $20times$ versus art.
arXiv Detail & Related papers (2022-11-19T17:09:50Z) - Fast and High-Quality Image Denoising via Malleable Convolutions [72.18723834537494]
We present Malleable Convolution (MalleConv), as an efficient variant of dynamic convolution.
Unlike previous works, MalleConv generates a much smaller set of spatially-varying kernels from input.
We also build an efficient denoising network using MalleConv, coined as MalleNet.
arXiv Detail & Related papers (2022-01-02T18:35:20Z) - Pruning Self-attentions into Convolutional Layers in Single Path [89.55361659622305]
Vision Transformers (ViTs) have achieved impressive performance over various computer vision tasks.
We propose Single-Path Vision Transformer pruning (SPViT) to efficiently and automatically compress the pre-trained ViTs.
Our SPViT can trim 52.0% FLOPs for DeiT-B and get an impressive 0.6% top-1 accuracy gain simultaneously.
arXiv Detail & Related papers (2021-11-23T11:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.