DVMSR: Distillated Vision Mamba for Efficient Super-Resolution
- URL: http://arxiv.org/abs/2405.03008v2
- Date: Sat, 11 May 2024 05:15:41 GMT
- Title: DVMSR: Distillated Vision Mamba for Efficient Super-Resolution
- Authors: Xiaoyan Lei, Wenlong Zhang, Weifeng Cao,
- Abstract summary: We propose DVMSR, a novel lightweight Image SR network that incorporates Vision Mamba and a distillation strategy.
Our proposed DVMSR can outperform state-of-the-art efficient SR methods in terms of model parameters.
- Score: 7.551130027327461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient Image Super-Resolution (SR) aims to accelerate SR network inference by minimizing computational complexity and network parameters while preserving performance. Existing state-of-the-art Efficient Image Super-Resolution methods are based on convolutional neural networks. Few attempts have been made with Mamba to harness its long-range modeling capability and efficient computational complexity, which have shown impressive performance on high-level vision tasks. In this paper, we propose DVMSR, a novel lightweight Image SR network that incorporates Vision Mamba and a distillation strategy. The network of DVMSR consists of three modules: feature extraction convolution, multiple stacked Residual State Space Blocks (RSSBs), and a reconstruction module. Specifically, the deep feature extraction module is composed of several residual state space blocks (RSSB), each of which has several Vision Mamba Moudles(ViMM) together with a residual connection. To achieve efficiency improvement while maintaining comparable performance, we employ a distillation strategy to the vision Mamba network for superior performance. Specifically, we leverage the rich representation knowledge of teacher network as additional supervision for the output of lightweight student networks. Extensive experiments have demonstrated that our proposed DVMSR can outperform state-of-the-art efficient SR methods in terms of model parameters while maintaining the performance of both PSNR and SSIM. The source code is available at https://github.com/nathan66666/DVMSR.git
Related papers
- Hi-Mamba: Hierarchical Mamba for Efficient Image Super-Resolution [42.259283231048954]
State Space Models (SSM) have shown strong representation ability in modeling long-range dependency with linear complexity.
We propose a novel Hierarchical Mamba network, namely, Hi-Mamba, for image super-resolution (SR)
arXiv Detail & Related papers (2024-10-14T04:15:04Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - Incorporating Transformer Designs into Convolutions for Lightweight
Image Super-Resolution [46.32359056424278]
Large convolutional kernels have become popular in designing convolutional neural networks.
The increase in kernel size also leads to a quadratic growth in the number of parameters, resulting in heavy computation and memory requirements.
We propose a neighborhood attention (NA) module that upgrades the standard convolution with a self-attention mechanism.
Building upon the NA module, we propose a lightweight single image super-resolution (SISR) network named TCSR.
arXiv Detail & Related papers (2023-03-25T01:32:18Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network [15.846394239848959]
We present a lightweight multi-scale feature interaction network (MSFIN)
For lightweight SISR, MSFIN expands the receptive field and adequately exploits the informative features of the low-resolution observed images.
Our proposed MSFIN can achieve comparable performance against the state-of-the-arts with a more lightweight model.
arXiv Detail & Related papers (2021-03-24T07:25:21Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
Single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs.
We propose to use shift operation to generate the redundant features (i.e., Ghost features) of SISR models.
We show that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines.
arXiv Detail & Related papers (2021-01-21T10:09:47Z) - MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution [2.3576437999036473]
A novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR.
The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model.
arXiv Detail & Related papers (2020-11-09T17:11:15Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.