論文の概要: The Zamba2 Suite: Technical Report
- arxiv url: http://arxiv.org/abs/2411.15242v1
- Date: Fri, 22 Nov 2024 02:55:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:49.355611
- Title: The Zamba2 Suite: Technical Report
- Title(参考訳): Zamba2 Suite:テクニカルレポート
- Authors: Paolo Glorioso, Quentin Anthony, Yury Tokpanov, Anna Golubeva, Vasudev Shyam, James Whittington, Jonathan Pilault, Beren Millidge,
- Abstract要約: Zamba2は1.2B、2.7B、7.4BパラメータハイブリッドのMamba2変換器である。
それは彼らのクラスの主要なオープンウェイトモデルに対して、アートパフォーマンスの状態を達成します。
- 参考スコア(独自算出の注目度): 9.766119150620916
- License:
- Abstract: In this technical report, we present the Zamba2 series -- a suite of 1.2B, 2.7B, and 7.4B parameter hybrid Mamba2-transformer models that achieve state of the art performance against the leading open-weights models of their class, while achieving substantial gains in inference latency, throughput, and memory efficiency. The Zamba2 series builds upon our initial work with Zamba1-7B, optimizing its architecture, training and annealing datasets, and training for up to three trillion tokens. We provide open-source weights for all models of the Zamba2 series as well as instruction-tuned variants that are strongly competitive against comparable instruct-tuned models of their class. We additionally open-source the pretraining dataset, which we call Zyda-2, used to train the Zamba2 series of models. The models and datasets used in this work are openly available at https://huggingface.co/Zyphra
- Abstract(参考訳): この技術報告では、Zamba2シリーズ -- 1.2B、2.7B、7.4BパラメータハイブリッドMamba2-transformerモデルで、クラスの主要なオープンウェイトモデルに対して最先端のパフォーマンスを実現するとともに、推論レイテンシ、スループット、メモリ効率を大幅に向上させる。
Zamba2シリーズは、Zamba1-7Bとの最初の作業に基づいて、アーキテクチャ、トレーニング、データセットのアニールを最適化し、最大3兆トークンのトレーニングを行います。
我々は、Zamba2級数の全モデルに対するオープンソースウェイトと、それらのクラスの同等の命令付きモデルと強く競合する命令付き変種を提供する。
さらに、Zyda-2と呼ばれる事前トレーニングデータセットをオープンソースにして、Zamba2シリーズのトレーニングに使用しています。
この作業で使用されるモデルとデータセットはhttps://huggingface.co/Zyphraで公開されています。
関連論文リスト
- A Mamba Foundation Model for Time Series Forecasting [13.593170999506889]
本稿では,マンバアーキテクチャ上に構築された時系列予測のための線形複雑基盤モデルであるTSMambaを紹介する。
このモデルは、前方および後方のMambaエンコーダを通して時間的依存関係をキャプチャし、高い予測精度を達成する。
また、タスク固有の予測モデルと比較して、競争力や優れたフルショットパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-11-05T09:34:05Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
我々は、幅広い下流タスクを扱える普遍的な埋め込みモデルを構築している。
1 MMEB(Massive Multimodal Embedding Benchmark)は、4 つのメタタスク(分類、視覚的質問応答、マルチモーダル検索、視覚的グラウンド)と36 つのデータセット(20 のトレーニングと16 の評価データセットを含む)と、2 の VLM2Vec (Vision-Language Model -> Vector) を含む。
論文 参考訳(メタデータ) (2024-10-07T16:14:05Z) - Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models [146.18107944503436]
Molmoは、オープンネスのクラスで最先端のVLMの新たなファミリーである。
私たちの重要なイノベーションは、人間のアノテーションから収集された、新しくて詳細な画像キャプションデータセットです。
近い将来、モデルウェイト、キャプション、微調整データ、ソースコードをすべてリリースする予定です。
論文 参考訳(メタデータ) (2024-09-25T17:59:51Z) - The Mamba in the Llama: Distilling and Accelerating Hybrid Models [76.64055251296548]
注目層からの線形射影重みを学術的なGPU資源で再利用することにより,大規模な変換器を線形RNNに蒸留することが可能であることを示す。
その結果、注意層を4分の1含むハイブリッドモデルは、チャットベンチマークのオリジナルのTransformerに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-27T17:56:11Z) - Jamba-1.5: Hybrid Transformer-Mamba Models at Scale [30.893146392880773]
提案するJamba-1.5は,Jambaアーキテクチャに基づく命令調整型大規模言語モデルである。
94Bのアクティブパラメータを持つJamba-1.5-Largeと12Bのアクティブパラメータを持つJamba-1.5-Miniの2つのモデルサイズをリリースする。
どちらのモデルも様々な対話型および命令追従型キャパビリティのために微調整されており、有効コンテキスト長は256Kである。
論文 参考訳(メタデータ) (2024-08-22T17:38:59Z) - Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models [92.36510016591782]
本稿では,事前学習したトランスフォーマーアーキテクチャを,状態空間モデル(SSM)などの代替アーキテクチャに蒸留する手法を提案する。
提案手法はMOHAWKと呼ばれ、3Bトークンと5Bトークンを用いたハイブリッドバージョン(Hybrid Phi-Mamba)を用いてPhi-1.5アーキテクチャに基づくMamba-2変異体を蒸留することができる。
Phi-Mambaは、スクラッチからモデルのトレーニングに使用されるトレーニングデータの1%未満を使用してはいるが、過去のオープンソース非トランスフォーマーモデルと比較して、大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-08-19T17:48:11Z) - Compact Language Models via Pruning and Knowledge Distillation [61.56557874432008]
ミニトロンモデルでは、スクラッチからのトレーニングに比べてMMLUスコアが最大16%改善している。
すでにトレーニング済みの15Bモデルから8Bと4Bモデルを抽出するには、スクラッチからトレーニングするよりも、モデル毎のトレーニングトークンを最大40倍少なくする必要があります。
論文 参考訳(メタデータ) (2024-07-19T21:47:57Z) - Zamba: A Compact 7B SSM Hybrid Model [10.973515151563424]
Zambaは7B SSMトランスフォーマーハイブリッドモデルである。
Zambaは、公開データセットから1Tトークンをトレーニングする。
Zambaは、同等のトランスフォーマーモデルよりも推論がかなり速い。
論文 参考訳(メタデータ) (2024-05-26T22:23:02Z) - CLIP-Mamba: CLIP Pretrained Mamba Models with OOD and Hessian Evaluation [18.383760896304604]
本報告では,コントラッシブ・テクニカル・イメージ・プレトレーニング(CLIP)を利用したMambaモデルをトレーニングする最初の試みを紹介する。
Mambaモデル67万のパラメータは、ゼロショット分類タスクにおけるビジョントランスフォーマー(ViT)モデルと同等である。
論文 参考訳(メタデータ) (2024-04-30T09:40:07Z) - The Hidden Attention of Mamba Models [54.50526986788175]
Mamba層は、複数のドメインをモデリングするのに非常に効果的である効率的な選択状態空間モデル(SSM)を提供する。
このようなモデルを注意駆動モデルとみなすことができる。
この新たな視点は、トランスの自己保持層のメカニズムを経験的かつ理論的に比較することを可能にする。
論文 参考訳(メタデータ) (2024-03-03T18:58:21Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。
MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。
我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
論文 参考訳(メタデータ) (2024-02-01T07:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。