TPLogAD: Unsupervised Log Anomaly Detection Based on Event Templates and Key Parameters
- URL: http://arxiv.org/abs/2411.15250v1
- Date: Fri, 22 Nov 2024 08:25:21 GMT
- Title: TPLogAD: Unsupervised Log Anomaly Detection Based on Event Templates and Key Parameters
- Authors: Jiawei Lu, Chengrong Wu,
- Abstract summary: We propose TPLogAD, a universal unsupervised method for analyzing unstructured logs.
The itemplate2vec and para2vec included in TPLogAD are two efficient and easy-to-implement semantic representation methods for logs.
Our experiments on four public log datasets show that TPLogAD outperforms existing log anomaly detection methods.
- Score: 2.8377404383552043
- License:
- Abstract: Log-system is an important mechanism for recording the runtime status and events of Web service systems, and anomaly detection in logs is an effective method of detecting problems. However, manual anomaly detection in logs is inefficient, error-prone, and unrealistic. Existing log anomaly detection methods either use the indexes of event templates, or form vectors by embedding the fixed string part of the template as a sentence, or use time parameters for sequence analysis. However, log entries often contain features and semantic information that cannot be fully represented by these methods, resulting in missed and false alarms. In this paper, we propose TPLogAD, a universal unsupervised method for analyzing unstructured logs, which performs anomaly detection based on event templates and key parameters. The itemplate2vec and para2vec included in TPLogAD are two efficient and easy-to-implement semantic representation methods for logs, detecting anomalies in event templates and parameters respectively, which has not been achieved in previous work. Additionally, TPLogAD can avoid the interference of log diversity and dynamics on anomaly detection. Our experiments on four public log datasets show that TPLogAD outperforms existing log anomaly detection methods.
Related papers
- Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
High cost of manual annotation and dynamic nature of usage scenarios present major challenges to effective log analysis.
This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios.
We also introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor.
arXiv Detail & Related papers (2024-09-18T11:35:58Z) - LogELECTRA: Self-supervised Anomaly Detection for Unstructured Logs [0.0]
The goal of log-based anomaly detection is to automatically detect system anomalies by analyzing the large number of logs generated in a short period of time.
Previous studies have used a log to extract templates from unstructured log data and detect anomalies on the basis of patterns of the template occurrences.
We propose LogELECTRA, a new log anomaly detection model that analyzes a single line of log messages more deeply on the basis of self-supervised anomaly detection.
arXiv Detail & Related papers (2024-02-16T01:47:02Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - Data Drift Monitoring for Log Anomaly Detection Pipelines [2.941832525496684]
We introduce a Bayes Factor-based drift detection method that identifies when intervention, retraining, and updating of the LAD model are required with human involvement.
We illustrate our method using sequences of log activity, both from unaltered data, and simulated activity with controlled levels of anomaly contamination.
arXiv Detail & Related papers (2023-10-17T09:10:40Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Impact of Log Parsing on Deep Learning-Based Anomaly Detection [4.0719622481627376]
We show that there is no strong correlation between log parsing accuracy and anomaly detection accuracy.
We experimentally confirm existing theoretical results showing that it is a property that we refer to as distinguishability in log parsing results.
arXiv Detail & Related papers (2023-05-25T09:53:02Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.