論文の概要: OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
- arxiv url: http://arxiv.org/abs/2411.15255v1
- Date: Fri, 22 Nov 2024 08:54:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:16.932175
- Title: OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
- Title(参考訳): OSMamba:露光補正用デュアルドメイン先行発電機付き全方位分光マンバ
- Authors: Gehui Li, Bin Chen, Chen Zhao, Lei Zhang, Jian Zhang,
- Abstract要約: 我々は新しい露光補正ネットワークであるOmnidirectional Spectral Mamba (OSMamba)を提案する。
OSMambaは、Mambaを周波数領域に適応させる全方位スペクトル走査機構を導入している。
我々は、よく露出した画像から学習し、劣化のない拡散前生成を行うデュアルドメイン先行生成器を開発した。
- 参考スコア(独自算出の注目度): 15.884868711123993
- License:
- Abstract: Exposure correction is a fundamental problem in computer vision and image processing. Recently, frequency domain-based methods have achieved impressive improvement, yet they still struggle with complex real-world scenarios under extreme exposure conditions. This is due to the local convolutional receptive fields failing to model long-range dependencies in the spectrum, and the non-generative learning paradigm being inadequate for retrieving lost details from severely degraded regions. In this paper, we propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network that incorporates the advantages of state space models and generative diffusion models to address these limitations. Specifically, OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain to capture comprehensive long-range dependencies in both the amplitude and phase spectra of deep image features, hence enhancing illumination correction and structure recovery. Furthermore, we develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior containing correct information about severely under- and over-exposed regions for better detail restoration. Extensive experiments on multiple-exposure and mixed-exposure datasets demonstrate that the proposed OSMamba achieves state-of-the-art performance both quantitatively and qualitatively.
- Abstract(参考訳): 露光補正はコンピュータビジョンと画像処理の基本的な問題である。
近年、周波数領域に基づく手法は目覚ましい改善を遂げているが、極端な露光条件下では複雑な現実世界のシナリオに苦戦している。
これは、局所的な畳み込み受容場がスペクトルの長距離依存性をモデル化できないことによるものであり、非生成学習パラダイムは、ひどく劣化した領域から失われた詳細を取得するのに不十分である。
本稿では,これらの制約に対処するための状態空間モデルと生成拡散モデルの利点を取り入れた新しい露光補正ネットワークであるOmnidirectional Spectral Mamba (OSMamba)を提案する。
特に、OSMambaは、周波数領域にMambaを適応させる全方位スペクトル走査機構を導入し、深い画像特徴の振幅スペクトルと位相スペクトルの両方の包括的長距離依存性を捕捉し、照明補正と構造回復を向上する。
さらに、高解像度画像から学習して劣化のない拡散を発生させるデュアルドメイン先行生成器を開発し、より詳細な復元を行う。
マルチ露光と混合露光のデータセットに関する大規模な実験により、提案したOSMambaは、定量的にも定性的にも最先端のパフォーマンスを達成することを示した。
関連論文リスト
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
低照度画像の強化、特に生ドメインからsRGBドメインへのマッピングのようなクロスドメインタスクは、依然として大きな課題である。
RAWMambaと呼ばれる新しいMambaスキャニング機構を提案する。
また,Retinex の先行したRetinex Decomposition Module (RDM) も提案する。
論文 参考訳(メタデータ) (2024-09-11T06:12:03Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
マルチ露光画像融合は、異なる露光で画像を統合することにより、単一の高ダイナミック画像を生成することを目的としている。
本稿では,MEF-SFI と呼ばれる空間周波数統合フレームワークによるマルチ露光画像融合の新たな視点を提案する。
提案手法は,最先端のマルチ露光画像融合手法に対する視覚的近似核融合結果を実現する。
論文 参考訳(メタデータ) (2023-12-17T04:45:15Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
露出関連問題の修正は、画像の品質向上における重要な要素である。
本稿では、周波数領域を利用して露出補正タスクの処理を改善し、統一する新しい手法を提案する。
提案手法は, 露光補正においてより高度で統一された解を実現する方法である。
論文 参考訳(メタデータ) (2023-09-03T14:09:14Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
単一のニューラルネットワークは、すべての露光問題に対処することが難しい。
特に、コンボリューションは、極端に過度に露出した領域における忠実な色や詳細を復元する能力を妨げる。
本稿では,マクロマイクロ階層変換器を提案する。マクロマイクロ階層変換器は,長距離依存を捉えるマクロアテンション,局所特徴を抽出するマイクロアテンション,粗大な修正のための階層構造を提案する。
論文 参考訳(メタデータ) (2023-09-02T09:07:36Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
蛍光顕微鏡で得られた生きた試料の画像の空間分解能は、可視光の回折により物理的に制限される。
この制限を克服するために、いくつかのデコンボリューションと超解像技術が提案されている。
論文 参考訳(メタデータ) (2023-03-20T15:43:52Z) - Frequency-Aware Self-Supervised Monocular Depth Estimation [41.97188738587212]
自己教師付き単眼深度推定モデルを改善するための2つの多目的手法を提案する。
本手法の高一般化性は,測光損失関数の基本的およびユビキタスな問題を解くことによって達成される。
我々は、解釈可能な解析で深度推定器を改善するために、初めてぼやけた画像を提案する。
論文 参考訳(メタデータ) (2022-10-11T14:30:26Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
空間情報とスペクトル情報の漸進的補償によりMS画像のシャープ化を行うパンシャーピングの新しい2段階モデルを提案する。
モデル全体が三重GANで構成されており、特定のアーキテクチャに基づいて、三重GANを同時に訓練できるように、共同補償損失関数が設計されている。
論文 参考訳(メタデータ) (2022-07-29T03:09:21Z) - Dual-Stage Approach Toward Hyperspectral Image Super-Resolution [21.68598210467761]
ハイパースペクトル画像超解像(DualSR)のための新しい構造を提案する。
粗い段階では、あるスペクトル範囲において高い類似性を持つ5つのバンドが3つのグループに分けられ、現在のバンドは潜在的な知識を研究するためにガイドされる。
微細な段階では、スペクトル角制約による拡張された後方投影法を開発し、空間-スペクトル整合性の内容を学習する。
論文 参考訳(メタデータ) (2022-04-09T04:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。