Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rabi Model
- URL: http://arxiv.org/abs/2411.15256v1
- Date: Fri, 22 Nov 2024 09:03:28 GMT
- Title: Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rabi Model
- Authors: Vebjørn H. Bakkestuen, Vegard Falmår, Maryam Lotfigolian, Markus Penz, Michael Ruggenthaler, Andre Laestadius,
- Abstract summary: Key features of density-functional theory (DFT) within a minimal implementation of quantum electrodynamics are demonstrated.
We derive a form for the adiabatic connection that is almost explicit in the density variables.
This allows several key features of DFT to be studied without approximations.
- Score: 0.0
- License:
- Abstract: The key features of density-functional theory (DFT) within a minimal implementation of quantum electrodynamics are demonstrated, thus allowing to study elementary properties of quantum-electrodynamical density-functional theory (QEDFT). We primarily employ the quantum Rabi model, that describes a two-level system coupled to a single photon mode, and also discuss the Dicke model, where multiple two-level systems couple to the same photon mode. In these settings, the density variables of the system are the polarization and the displacement of the photon field. We give analytical expressions for the constrained-search functional and the exchange-correlation potential and compare to established results from QEDFT. We further derive a form for the adiabatic connection that is almost explicit in the density variables, up to only a non-explicit correlation term that gets bounded both analytically and numerically. This allows several key features of DFT to be studied without approximations.
Related papers
- Quantum-electrodynamical density-functional theory for the Dicke Hamiltonian [0.0]
A detailed analysis of density-functional theory for quantum-electrodynamical model systems is provided.
In particular, the quantum Rabi model, the Dicke model, and the latter to multiple modes are considered.
arXiv Detail & Related papers (2024-09-18T12:53:36Z) - Electron-Photon Exchange-Correlation Approximation for QEDFT [0.0]
Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for exploring complex light-matter interactions.
An approximation for the electron-photon exchange-correlation potential is needed.
Here we consider this QEDFT functional approximation from one to three-dimensional finite systems.
arXiv Detail & Related papers (2024-02-15T08:50:36Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Single-particle-exact density functional theory [0.0]
'Single-particle-exact density functional theory' (1pEx-DFT) represents all single-particle contributions to the energy with exact functionals.
We parameterize interaction energy functionals by utilizing two new schemes for constructing density matrices from 'participation numbers' of the single-particle states of quantum many-body systems.
arXiv Detail & Related papers (2023-05-05T01:24:21Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Combining density functional theory with macroscopic QED for quantum
light-matter interactions in 2D materials [0.0]
We show Purcell enhancements reaching $107$ for intersubband transitions in few-layer transition metal dichalcogenides sandwiched between graphene and a perfect conductor.
Our work lays the foundation for practical ab initio-based quantum treatments of light matter interactions in realistic nanostructured materials.
arXiv Detail & Related papers (2021-03-17T08:23:56Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.