Combining density functional theory with macroscopic QED for quantum
light-matter interactions in 2D materials
- URL: http://arxiv.org/abs/2103.09501v3
- Date: Mon, 31 May 2021 09:37:45 GMT
- Title: Combining density functional theory with macroscopic QED for quantum
light-matter interactions in 2D materials
- Authors: Mark Kamper Svendsen, Yaniv Kurman, Peter Schmidt, Frank Koppens, Ido
Kaminer, Kristian S. Thygesen
- Abstract summary: We show Purcell enhancements reaching $107$ for intersubband transitions in few-layer transition metal dichalcogenides sandwiched between graphene and a perfect conductor.
Our work lays the foundation for practical ab initio-based quantum treatments of light matter interactions in realistic nanostructured materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantitative and predictive theory of quantum light-matter interactions in
ultra thin materials involves several fundamental challenges. Any realistic
model must simultaneously account for the ultra-confined plasmonic modes and
their quantization in the presence of losses, while describing the electronic
states from first principles. Herein we develop such a framework by combining
density functional theory (DFT) with macroscopic quantum electrodynamics, which
we use to show Purcell enhancements reaching $10^7$ for intersubband
transitions in few-layer transition metal dichalcogenides sandwiched between
graphene and a perfect conductor. The general validity of our methodology
allows us to put several common approximation paradigms to quantitative test,
namely the dipole-approximation, the use of 1D quantum well model wave
functions, and the Fermi's Golden rule. The analysis shows that the choice of
wave functions is of particular importance. Our work lays the foundation for
practical ab initio-based quantum treatments of light matter interactions in
realistic nanostructured materials.
Related papers
- Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rabi Model [0.0]
Key features of density-functional theory (DFT) within a minimal implementation of quantum electrodynamics are demonstrated.
We derive a form for the adiabatic connection that is almost explicit in the density variables.
This allows several key features of DFT to be studied without approximations.
arXiv Detail & Related papers (2024-11-22T09:03:28Z) - Single-particle-exact density functional theory [0.0]
'Single-particle-exact density functional theory' (1pEx-DFT) represents all single-particle contributions to the energy with exact functionals.
We parameterize interaction energy functionals by utilizing two new schemes for constructing density matrices from 'participation numbers' of the single-particle states of quantum many-body systems.
arXiv Detail & Related papers (2023-05-05T01:24:21Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum delocalization, gauge and quantum optics: The light-matter
interaction in relativistic quantum information [0.0]
We revisit the interaction of a first-quantized atomic system with the quantum electromagnetic field.
We connect the full minimal-coupling model with the typical effective models used in quantum optics.
arXiv Detail & Related papers (2020-08-28T18:00:00Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.