There is no SAMantics! Exploring SAM as a Backbone for Visual Understanding Tasks
- URL: http://arxiv.org/abs/2411.15288v1
- Date: Fri, 22 Nov 2024 17:00:18 GMT
- Title: There is no SAMantics! Exploring SAM as a Backbone for Visual Understanding Tasks
- Authors: Miguel Espinosa, Chenhongyi Yang, Linus Ericsson, Steven McDonagh, Elliot J. Crowley,
- Abstract summary: The Segment Anything Model (SAM) was originally designed for label-agnostic mask generation.
We quantify SAM's semantic capabilities by comparing base image encoder efficacy under classification tasks.
Our findings reveal a significant lack of semantic discriminability in SAM feature representations.
- Score: 15.061599989448867
- License:
- Abstract: The Segment Anything Model (SAM) was originally designed for label-agnostic mask generation. Does this model also possess inherent semantic understanding, of value to broader visual tasks? In this work we follow a multi-staged approach towards exploring this question. We firstly quantify SAM's semantic capabilities by comparing base image encoder efficacy under classification tasks, in comparison with established models (CLIP and DINOv2). Our findings reveal a significant lack of semantic discriminability in SAM feature representations, limiting potential for tasks that require class differentiation. This initial result motivates our exploratory study that attempts to enable semantic information via in-context learning with lightweight fine-tuning where we observe that generalisability to unseen classes remains limited. Our observations culminate in the proposal of a training-free approach that leverages DINOv2 features, towards better endowing SAM with semantic understanding and achieving instance-level class differentiation through feature-based similarity. Our study suggests that incorporation of external semantic sources provides a promising direction for the enhancement of SAM's utility with respect to complex visual tasks that require semantic understanding.
Related papers
- GoodSAM++: Bridging Domain and Capacity Gaps via Segment Anything Model for Panoramic Semantic Segmentation [22.344399402787644]
GoodSAM++ is a novel framework utilizing the powerful zero-shot instance segmentation capability of SAM (i.e., teacher) to learn a compact panoramic semantic segmentation model.
GoodSAM++ addresses two critical challenges: 1) SAM's inability to provide semantic labels and inherent distortion problems of panoramic images; 2) the significant capacity disparity between SAM and the student.
arXiv Detail & Related papers (2024-08-17T06:53:10Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM) has demonstrated its impressive generalization capabilities in open-world scenarios with the guidance of prompts.
We propose a novel framework, termed AlignSAM, designed for automatic prompting for aligning SAM to an open context.
arXiv Detail & Related papers (2024-06-01T16:21:39Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM) has emerged as a new paradigmatic vision foundation model.
Despite SAM finding applications and adaptations in various domains, its primary limitation lies in the inability to grasp object semantics.
We present Sambor to seamlessly integrate SAM with the open-vocabulary object detector in an end-to-end framework.
arXiv Detail & Related papers (2023-12-06T17:19:00Z) - Self-guided Few-shot Semantic Segmentation for Remote Sensing Imagery
Based on Large Vision Models [14.292149307183967]
This research introduces a structured framework designed for the automation of few-shot semantic segmentation.
It utilizes the SAM model and facilitates a more efficient generation of semantically discernible segmentation outcomes.
Central to our methodology is a novel automatic prompt learning approach, leveraging prior guided masks to produce coarse pixel-wise prompts for SAM.
arXiv Detail & Related papers (2023-11-22T07:07:55Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation
based on Visual Foundation Model [29.42043345787285]
We propose a method to learn the generation of appropriate prompts for Segment Anything Model (SAM)
This enables SAM to produce semantically discernible segmentation results for remote sensing images.
We also propose several ongoing derivatives for instance segmentation tasks, drawing on recent advancements within the SAM community, and compare their performance with RSPrompter.
arXiv Detail & Related papers (2023-06-28T14:51:34Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.