Boosting Photon-Number-Resolved Detection Rates of Transition-Edge Sensors by Machine Learning
- URL: http://arxiv.org/abs/2411.15360v1
- Date: Fri, 22 Nov 2024 22:09:50 GMT
- Title: Boosting Photon-Number-Resolved Detection Rates of Transition-Edge Sensors by Machine Learning
- Authors: Zhenghao Li, Matthew J. H. Kendall, Gerard J. Machado, Ruidi Zhu, Ewan Mer, Hao Zhan, Aonan Zhang, Shang Yu, Ian A. Walmsley, Raj B. Patel,
- Abstract summary: Transition-Edge Sensors (TESs) are very effective photon-number-resolving (PNR) detectors.
Their relatively slow thermal recovery time severely limits their operation rate in experimental scenarios.
We develop an algorithmic approach that enables TESs to detect and accurately classify photon pulses without waiting for a full recovery time between detection events.
- Score: 2.9829310103458186
- License:
- Abstract: Transition-Edge Sensors (TESs) are very effective photon-number-resolving (PNR) detectors that have enabled many photonic quantum technologies. However, their relatively slow thermal recovery time severely limits their operation rate in experimental scenarios compared to leading non-PNR detectors. In this work, we develop an algorithmic approach that enables TESs to detect and accurately classify photon pulses without waiting for a full recovery time between detection events. We propose two machine-learning-based signal processing methods: one supervised learning method and one unsupervised clustering method. By benchmarking against data obtained using coherent states and squeezed states, we show that the methods extend the TES operation rate to 800 kHz, achieving at least a four-fold improvement, whilst maintaining accurate photon-number assignment up to at least five photons. Our algorithms will find utility in applications where high rates of PNR detection are required and in technologies which demand fast active feed-forward of PNR detection outcomes.
Related papers
- Optically-Sampled Superconducting-Nanostrip Photon-Number Resolving Detector for Non-Classical Quantum State Generation [0.0]
Photon number-resolving detectors (PNRDs) are the ultimate optical sensors.
Superconducting-nanostrip photon detectors (SNSPDs) have been found to have photon number resolving capability without multiplexing.
arXiv Detail & Related papers (2024-05-11T04:15:20Z) - Resolving Photon Numbers Using Ultra-High-Resolution Timing of a Single
Low-Jitter Superconducting Nanowire Detector [0.0]
Photon-number-resolving (PNR) detectors are a key enabling technology in photonic quantum information processing.
Here, we demonstrate the PNR capacity of conventional superconducting nanowire single-photon detectors by performing ultra-high-resolution time-tagging of the detector-generated electrical pulses.
We present the implementation of such a PNR detector in the telecom C-band and its characterization by measuring the photon-number statistics of coherent light with tunable intensity.
arXiv Detail & Related papers (2023-10-19T05:11:06Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Number-State Reconstruction with a Single Single-Photon Avalanche Detector [1.5833270109954136]
Single-photon avalanche detectors (SPADs) are crucial sensors of light for many fields and applications.
We present a methodology for performing photon number-state reconstruction with only one SPAD.
arXiv Detail & Related papers (2023-08-25T18:00:35Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-efficiency and fast photon-number resolving parallel
superconducting nanowire single-photon detector [0.0]
Single-photon detectors are an enabling technology in many areas such as photonic quantum computing, non-classical light source characterisation and quantum imaging.
Here, we demonstrate high-efficiency PNR detectors using a parallel superconducting nanowire single-photon detector (P-SNSPD) architecture that does not suffer from crosstalk between the pixels and that is free of latching.
arXiv Detail & Related papers (2022-07-29T08:15:46Z) - Unexpected detection rate dependence of the intrinsic detection
efficiency in single-photon detectors based on avalanche diodes [0.0]
Single-photon detectors are a pivotal component in photonic quantum technologies.
intrinsic detection efficiency is of utmost importance to ensure the proper evaluation of the performance.
arXiv Detail & Related papers (2021-12-20T16:17:22Z) - Photon detection probability prediction using one-dimensional generative
neural network [62.997667081978825]
We propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer.
This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation.
This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
arXiv Detail & Related papers (2021-09-11T01:43:12Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Towards Online Monitoring and Data-driven Control: A Study of
Segmentation Algorithms for Laser Powder Bed Fusion Processes [83.97264034062673]
An increasing number of laser powder bed fusion machines use off-axis infrared cameras to improve online monitoring and data-driven control capabilities.
We study over 30 segmentation algorithms that segment each infrared image into a foreground and background.
The identified algorithms can be readily applied to the laser powder bed fusion machines to address each of the above limitations and thus, significantly improve process control.
arXiv Detail & Related papers (2020-11-18T03:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.