Personalization of Wearable Sensor-Based Joint Kinematic Estimation Using Computer Vision for Hip Exoskeleton Applications
- URL: http://arxiv.org/abs/2411.15366v1
- Date: Fri, 22 Nov 2024 22:17:42 GMT
- Title: Personalization of Wearable Sensor-Based Joint Kinematic Estimation Using Computer Vision for Hip Exoskeleton Applications
- Authors: Changseob Song, Bogdan Ivanyuk-Skulskyi, Adrian Krieger, Kaitao Luo, Inseung Kang,
- Abstract summary: We propose a computer vision-based DL adaptation framework for real-time joint kinematic estimation.
This framework requires only a small dataset (i.e., 1-2 gait cycles) and does not depend on professional motion capture setups.
Our framework demonstrates a potential for smartphone camera-trained DL models to estimate real-time joint kinematics across novel users in clinical populations with applications in wearable robots.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate lower-limb joint kinematic estimation is critical for applications such as patient monitoring, rehabilitation, and exoskeleton control. While previous studies have employed wearable sensor-based deep learning (DL) models for estimating joint kinematics, these methods often require extensive new datasets to adapt to unseen gait patterns. Meanwhile, researchers in computer vision have advanced human pose estimation models, which are easy to deploy and capable of real-time inference. However, such models are infeasible in scenarios where cameras cannot be used. To address these limitations, we propose a computer vision-based DL adaptation framework for real-time joint kinematic estimation. This framework requires only a small dataset (i.e., 1-2 gait cycles) and does not depend on professional motion capture setups. Using transfer learning, we adapted our temporal convolutional network (TCN) to stiff knee gait data, allowing the model to further reduce root mean square error by 9.7% and 19.9% compared to a TCN trained on only able-bodied and stiff knee datasets, respectively. Our framework demonstrates a potential for smartphone camera-trained DL models to estimate real-time joint kinematics across novel users in clinical populations with applications in wearable robots.
Related papers
- OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction [62.385417528148224]
We present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset.<n>Experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance.
arXiv Detail & Related papers (2025-07-31T15:37:09Z) - Optimizing Locomotor Task Sets in Biological Joint Moment Estimation for Hip Exoskeleton Applications [0.0]
We introduce a locomotor task set optimization strategy to identify a minimal, yet representative, set of tasks that preserves model performance.
Our results demonstrate the ability to maintain model accuracy while significantly reducing the cost associated with data collection and model training.
arXiv Detail & Related papers (2024-12-10T17:29:21Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Benchmarking Skeleton-based Motion Encoder Models for Clinical Applications: Estimating Parkinson's Disease Severity in Walking Sequences [3.650839294933459]
General human motion encoders trained on large-scale human motion datasets for analyzing gait patterns in PD patients.
We evaluate six pre-trained state-of-the-art human motion encoder models on their ability to predict the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) gait scores from motion capture data.
arXiv Detail & Related papers (2024-05-28T04:29:10Z) - StairNet: Visual Recognition of Stairs for Human-Robot Locomotion [2.3811618212533663]
StairNet is an initiative to support the development of new deep learning models for visual sensing and recognition of stairs.
We present an overview of the development of our large-scale dataset with over 515,000 manually labeled images.
We show that StairNet can be an effective platform to develop and study new visual perception systems for human-robot locomotion.
arXiv Detail & Related papers (2023-10-31T17:30:57Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
We provide a neural architecture framework for mobile sensing data that can learn generalizable feature representations from time series.
This architecture combines benefits from CNN and Trans-former architectures to enable better prediction performance.
arXiv Detail & Related papers (2021-07-09T22:26:50Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's
Disease Classification of Gait Patterns [3.5939555573102857]
We show how to extract features relevant to accelerometer gait data for Parkinson's disease classification.
Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model.
We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.
arXiv Detail & Related papers (2020-05-06T04:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.