On the Impact of Fine-Tuning on Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2411.15382v1
- Date: Fri, 22 Nov 2024 23:54:37 GMT
- Title: On the Impact of Fine-Tuning on Chain-of-Thought Reasoning
- Authors: Elita Lobo, Chirag Agarwal, Himabindu Lakkaraju,
- Abstract summary: This study investigates the effect of fine-tuning on the reasoning abilities of large language models.
It addresses questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings.
- Score: 26.11408084129897
- License:
- Abstract: Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.
Related papers
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
arXiv Detail & Related papers (2024-06-15T13:16:44Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey [46.4375135354838]
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models.
The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains.
arXiv Detail & Related papers (2024-03-14T17:47:20Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.