On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2406.10625v2
- Date: Mon, 1 Jul 2024 13:36:29 GMT
- Title: On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models
- Authors: Sree Harsha Tanneru, Dan Ley, Chirag Agarwal, Himabindu Lakkaraju,
- Abstract summary: Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
- Score: 25.029579061612456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare, it is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior. While LLMs are known to generate CoT reasoning that is appealing to humans, prior studies have shown that these explanations do not accurately reflect the actual behavior of the underlying LLMs. In this work, we explore the promise of three broad approaches commonly employed to steer the behavior of LLMs to enhance the faithfulness of the CoT reasoning generated by LLMs: in-context learning, fine-tuning, and activation editing. Specifically, we introduce novel strategies for in-context learning, fine-tuning, and activation editing aimed at improving the faithfulness of the CoT reasoning. We then carry out extensive empirical analyses with multiple benchmark datasets to explore the promise of these strategies. Our analyses indicate that these strategies offer limited success in improving the faithfulness of the CoT reasoning, with only slight performance enhancements in controlled scenarios. Activation editing demonstrated minimal success, while fine-tuning and in-context learning achieved marginal improvements that failed to generalize across diverse reasoning and truthful question-answering benchmarks. In summary, our work underscores the inherent difficulty in eliciting faithful CoT reasoning from LLMs, suggesting that the current array of approaches may not be sufficient to address this complex challenge.
Related papers
- Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs)
We propose the textbfStrategic Chain-of-Thought (SCoT) to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps.
SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers.
arXiv Detail & Related papers (2024-09-05T06:28:05Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Thought-Like-Pro: Enhancing Reasoning of Large Language Models through Self-Driven Prolog-based Chain-of-Thought [31.964412924094656]
Large language models (LLMs) have shown exceptional performance as general-purpose assistants.
We introduce a novel learning framework, THOUGHT-LIKE-PRO, to facilitate learning and generalization across diverse reasoning tasks.
Our empirical findings indicate that our proposed approach substantially enhances the reasoning abilities of LLMs.
arXiv Detail & Related papers (2024-07-18T18:52:10Z) - ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis [20.24915029448926]
Large language models (LLMs) have achieved commendable accomplishments in various natural language processing tasks.
These challenges arise from the presence of implicit relationships that demand multi-step reasoning.
We propose a novel approach ERA-CoT, which aids LLMs in understanding context by capturing relationships between entities.
arXiv Detail & Related papers (2024-03-11T17:18:53Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
This study proposes a collaborative training-free reasoning scheme involving tight cooperation between Knowledge Graph (KG) and Large Language Models (LLMs)
Through such a cooperative approach, our scheme achieves more reliable knowledge-based reasoning and facilitates the tracing of the reasoning results.
arXiv Detail & Related papers (2024-02-07T15:56:17Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.