論文の概要: Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
- arxiv url: http://arxiv.org/abs/2411.15519v1
- Date: Sat, 23 Nov 2024 10:46:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:51.010018
- Title: Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
- Title(参考訳): fe-GAN(Feature Enriched Generative Adversarial Networks)によるリスクマネジメント
- Authors: Ling Chen,
- Abstract要約: 本稿では,金融リスク管理におけるFeature-Enriched Generative Adversarial Networks(FE-GAN)の適用について検討する。
FE-GANは、先行データから追加の入力シーケンスを組み込んで既存のGANアーキテクチャを強化し、モデル性能を向上させる。
The Wasserstein Generative Adversarial Network (WGAN) とTail Generative Adversarial Network (Tail-GAN) の2つの特殊なGANモデルをFE-GANフレームワークで評価した。
- 参考スコア(独自算出の注目度): 7.08506873242564
- License:
- Abstract: This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management, with a focus on improving the estimation of Value at Risk (VaR) and Expected Shortfall (ES). FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance. Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework. The results demonstrate that FE-GAN significantly outperforms traditional architectures in both VaR and ES estimation. Tail-GAN, leveraging its task-specific loss function, consistently outperforms WGAN in ES estimation, while both models exhibit similar performance in VaR estimation. Despite these promising results, the study acknowledges limitations, including reliance on highly correlated temporal data and restricted applicability to other domains. Future research directions include exploring alternative input generation methods, dynamic forecasting models, and advanced neural network architectures to further enhance GANs-based financial risk estimation.
- Abstract(参考訳): 本稿では,金融リスク管理におけるFeature-Enriched Generative Adversarial Networks (FE-GAN)の適用について検討する。
FE-GANは、先行データから追加の入力シーケンスを組み込んで既存のGANアーキテクチャを強化し、モデル性能を向上させる。
The Wasserstein Generative Adversarial Network (WGAN) とTail Generative Adversarial Network (Tail-GAN) の2つの特殊なGANモデルをFE-GANフレームワークで評価した。
その結果, FE-GAN はVaR と ES の両推定において従来のアーキテクチャよりも有意に優れていた。
タスク固有の損失関数を利用するTail-GANは、ES推定において一貫してWGANより優れており、VaR推定では同様の性能を示す。
これらの有望な結果にもかかわらず、この研究は、高度に相関した時間的データへの依存や、他の領域への適応性への制限を含む制限を認めている。
今後の研究方向性には、代替入力生成方法、動的予測モデル、GANに基づく財務リスク推定をさらに強化するための高度なニューラルネットワークアーキテクチャなどが含まれる。
関連論文リスト
- On the Convergence of (Stochastic) Gradient Descent for Kolmogorov--Arnold Networks [56.78271181959529]
Kolmogorov--Arnold Networks (KAN) はディープラーニングコミュニティで注目されている。
実験により、勾配降下(SGD)により最適化されたカンが、ほぼゼロに近い訓練損失を達成できることが示された。
論文 参考訳(メタデータ) (2024-10-10T15:34:10Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
マーケットのボラティリティを計測し、予測する新しいハイブリッドなDeep Learningモデルを提案する。
他の時系列モデルと比較すると、GINNは決定係数(R2$)、平均正方形誤差(MSE)、平均絶対誤差(MAE)の点で優れたサンプル外予測性能を示した。
論文 参考訳(メタデータ) (2024-09-30T23:53:54Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
リスク予測(VaR)には,長期記憶と非線形実現ボラティリティモデルクラスが提案されている。
このモデルはRNN-HARと呼ばれ、異種自己回帰(HAR)モデルを拡張している。
連続モンテカルロによる損失に基づく一般化ベイズ予想は、モデル推定と逐次予測に使用される。
論文 参考訳(メタデータ) (2024-08-24T14:17:31Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
グラフ次元注意ネットワーク(GDAN)という新しいアーキテクチャを提案する。
GDANは、細粒度のリスク関連特性を捉えるための次元レベルの注意機構を組み込んでいる。
金融シナリオにおけるGNN手法の解釈可能性について検討し、GDAN-DistShiftと呼ばれるGDANのためのデータ中心の説明器を提案する。
論文 参考訳(メタデータ) (2024-07-16T11:24:28Z) - Distributional Refinement Network: Distributional Forecasting via Deep Learning [0.8142555609235358]
アクチュエータモデリングにおける重要なタスクは、損失の分布特性をモデル化することである。
本稿では,本質的に解釈可能なベースラインモデルとフレキシブルニューラルネットワークを組み合わせた分散リファインメントネットワーク(DRN)を提案する。
DRNは、全ての量子化の様々な効果を捉え、適切な解釈性を維持しながら予測性能を向上させる。
論文 参考訳(メタデータ) (2024-06-03T05:14:32Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Power grid operational risk assessment using graph neural network
surrogates [5.202524136984542]
電力グリッド運用決定アルゴリズムのプロキシとしてグラフニューラルネットワーク(GNN)の有用性について検討する。
GNNはQoIの高速かつ正確な予測を提供することができる。
GNNベースの信頼性とリスクアセスメントの優れた精度は、GNNサロゲートがリアルタイムおよび数時間前に適用できる可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-21T03:02:30Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
GAN(Generative Adversarial Networks)は教師なし学習において大きな成功を収めている。
本稿では,H'older空間における密度データ分布推定のためのGANの近似と統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-10T16:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。