Derivation of recursive formulas for integrals of Hermite polynomial products and their applications
- URL: http://arxiv.org/abs/2411.15541v1
- Date: Sat, 23 Nov 2024 12:30:16 GMT
- Title: Derivation of recursive formulas for integrals of Hermite polynomial products and their applications
- Authors: Phan Quang Son, Tran Duong Anh-Tai, Le Minh Khang, Nguyen Duy Vy, Vinh N. T. Pham,
- Abstract summary: Results hold broad relevance across various fields of physics and mathematics.
They would be applied to accurately compute two- and three-body elements in ab initio simulations of one-dimensional few-body systems confined in harmonic traps.
- Score: 0.0
- License:
- Abstract: In this work, we derive three recursive formulas for the integrals of products of Hermite polynomials. The derivation is notably straightforward, relying solely on the well-established properties of Hermite polynomials and the technique of integration by parts. These results hold broad relevance across various fields of physics and mathematics. Specifically, they would be applied to accurately compute two- and three-body matrix elements in ab initio simulations of one-dimensional few-body systems confined in harmonic traps. Additionally, we provide a numerical subroutine that implements these recursive formulas, which accompanies this work.
Related papers
- Complementary polynomials in quantum signal processing [0.0]
To implement a given $P$, one must first construct a corresponding complementary $Q$.
Existing approaches to this problem employ numerical methods that are not amenable to explicit error analysis.
We present a new approach to complementarys using complex analysis.
arXiv Detail & Related papers (2024-06-06T16:47:11Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - Revisiting Tropical Polynomial Division: Theory, Algorithms and
Application to Neural Networks [40.137069931650444]
Tropical geometry has recently found several applications in the analysis of neural networks with piecewise linear activation functions.
This paper presents a new look at the problem of tropical division and its application to the simplification of neural networks.
arXiv Detail & Related papers (2023-06-27T02:26:07Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - An Exponential Separation Between Quantum Query Complexity and the
Polynomial Degree [79.43134049617873]
In this paper, we demonstrate an exponential separation between exact degree and approximate quantum query for a partial function.
For an alphabet size, we have a constant versus separation complexity.
arXiv Detail & Related papers (2023-01-22T22:08:28Z) - Krylov complexity and orthogonal polynomials [30.445201832698192]
Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution.
The construction of that basis relies on the Lanczos method of recursion.
arXiv Detail & Related papers (2022-05-25T14:40:54Z) - On the general family of third-order shape-invariant Hamiltonians
related to generalized Hermite polynomials [0.0]
This work reports and classifies the most general construction of rational quantum potentials in terms of the generalized Hermites.
It is achieved by exploiting the intrinsic relation between third-order shape-invariant Hamiltonians and the fourth Painlev'e equation.
arXiv Detail & Related papers (2022-03-10T20:45:37Z) - Polynomial algebras of superintegrable systems separating in Cartesian
coordinates from higher order ladder operators [0.618778092044887]
We introduce the general algebras characterizing a class of higher order superintegrable systems that separate in coordinates.
The construction relies on underlying Heisenberg algebras and their defining higher order ladder operators.
arXiv Detail & Related papers (2022-02-27T03:33:26Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.