論文の概要: Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons
- arxiv url: http://arxiv.org/abs/2411.15656v1
- Date: Sat, 23 Nov 2024 21:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:12.654722
- Title: Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons
- Title(参考訳): 生成ニューロンを用いたカスケードモデルを用いた機械非依存型腰椎MRI手術
- Authors: Promit Basak, Rusab Sarmun, Saidul Kabir, Israa Al-Hashimi, Enamul Hoque Bhuiyan, Anwarul Hasan, Muhammad Salman Khan, Muhammad E. H. Chowdhury,
- Abstract要約: MRI画像から腰椎椎間板と椎間板を分離する新しい機械診断手法を提案する。
12のスキャナーと34の被験者の画像からなるユニークなデータセットを、戦略的前処理とデータ拡張技術によって強化した。
本モデルとDenseNet121エンコーダの併用により, 腰椎椎間板断面積が83.66%, 感度が91.44%, Dice similarity Coefficient (DSC) が91.03%, 腰椎椎間板断面積が良好であった。
- 参考スコア(独自算出の注目度): 0.22198209072577352
- License:
- Abstract: Automated lumbar spine segmentation is very crucial for modern diagnosis systems. In this study, we introduce a novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images, employing a cascaded model that synergizes an ROI detection and a Self-organized Operational Neural Network (Self-ONN)-based encoder-decoder network for segmentation. Addressing the challenge of diverse MRI modalities, our methodology capitalizes on a unique dataset comprising images from 12 scanners and 34 subjects, enhanced through strategic preprocessing and data augmentation techniques. The YOLOv8 medium model excels in ROI extraction, achieving an excellent performance of 0.916 mAP score. Significantly, our Self-ONN-based model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice Similarity Coefficient (DSC) of 91.03%, as validated through rigorous 10-fold cross-validation. This study not only showcases an effective approach to MRI segmentation in spine-related disorders but also sets the stage for future advancements in automated diagnostic tools, emphasizing the need for further dataset expansion and model refinement for broader clinical applicability.
- Abstract(参考訳): 腰椎自動分節は現代の診断システムにとって極めて重要である。
本研究では,MRI画像から腰椎椎間板と椎間板をセグメント化するための新しいマシン非依存アプローチを提案する。
多様なMRIモダリティの課題に対処するため,本手法では,12個のスキャナーと34個の被験者の画像からなるユニークなデータセットを,戦略的前処理とデータ拡張技術によって強化した。
YOLOv8ミディアムモデルはROI抽出に優れ、0.916mAPスコアの優れた性能を実現している。
特に,DenseNet121エンコーダと組み合わせた自己ONNモデルでは,約83.66%,感度91.44%,Dice similarity Coefficient(DSC)91.03%で腰椎椎体とIVDセグメンテーションの優れた性能を示した。
本研究は、脊椎疾患におけるMRIセグメンテーションに対する効果的なアプローチを示すだけでなく、より広範な臨床応用のために、さらなるデータセット拡張とモデル改善の必要性を強調した、自動診断ツールの今後の進歩のステージも設定する。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation [0.0]
U-Netベースのディープラーニング技術は、自動化された医用画像セグメンテーションのための有望なアプローチとして登場しつつある。
腎腫瘍の診断のためのCTスキャン画像のエンドツーエンド自動セマンティックセマンティックセグメンテーションのための改良されたU-Netモデルを提案する。
論文 参考訳(メタデータ) (2024-10-20T19:02:41Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI [14.101371684361675]
我々はZ-SSMNet(Z-SSMNet)を提案する。
Z-SSMNetは、多次元(2D/2.5D/3D)畳み込みを適応的に統合し、高密度スライス情報と異方性bpMRIのスパースス間情報を学習する。
大規模未ラベルデータを用いてネットワークを事前学習するための自己教師付き学習(SSL)手法を提案する。
論文 参考訳(メタデータ) (2022-12-12T10:08:46Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
我々は,多系列ニューロオンコロジーMRIデータの集約と処理のための人工知能ベースのソリューションを提案する。
エンド・ツー・エンドのフレームワーク i) アンサンブル分類器を用いてMRIの配列を分類し, i) 再現可能な方法でデータを前処理し, iv) 腫瘍組織サブタイプを規定する。
欠落したシーケンスに対して堅牢であり、専門的なループアプローチを採用しており、セグメンテーションの結果は放射線学者によって手動で洗練される可能性がある。
論文 参考訳(メタデータ) (2022-10-06T18:23:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Weaving Attention U-net: A Novel Hybrid CNN and Attention-based Method
for Organs-at-risk Segmentation in Head and Neck CT Images [11.403827695550111]
我々は、畳み込みニューラルネットワーク(CNN)と自己認識機構を組み合わせた、新しいハイブリッドディープラーニングアプローチを開発した。
提案手法は10臓器対リスク(OAR)の基底真理によく似た輪郭を生成する。
新しいウィービング注意U-netは頭頸部CT画像のセグメンテーションに優れているか類似した性能を示した。
論文 参考訳(メタデータ) (2021-07-10T14:27:46Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。