論文の概要: Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier
- arxiv url: http://arxiv.org/abs/2211.02868v1
- Date: Sat, 5 Nov 2022 10:27:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 16:37:14.643114
- Title: Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier
- Title(参考訳): MRI画像とEnsemble Bagging Classifierを用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク
- Authors: P Supriya Patro, Tripti Goel, S A VaraPrasad, M Tanveer, R Murugan
- Abstract要約: 本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
- 参考スコア(独自算出の注目度): 1.487444917213389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural alterations have been thoroughly investigated in the brain during
the early onset of schizophrenia (SCZ) with the development of neuroimaging
methods. The objective of the paper is an efficient classification of SCZ in 2
different classes: Cognitive Normal (CN), and SCZ using magnetic resonance
imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural
network (CNN) based framework for SCZ diagnosis using MRI images. In the
proposed model, lightweight 3D CNN is used to extract both spatial and spectral
features simultaneously from 3D volume MRI scans, and classification is done
using an ensemble bagging classifier. Ensemble bagging classifier contributes
to preventing overfitting, reduces variance, and improves the model's accuracy.
The proposed algorithm is tested on datasets taken from three benchmark
databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These
datasets have undergone preprocessing steps to register all the MRI images to
the standard template and reduce the artifacts. The model achieves the highest
accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall
94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current
state-of-the-art techniques. The performance metrics evidenced the use of this
model to assist the clinicians for automatic accurate diagnosis of SCZ.
- Abstract(参考訳): 統合失調症(SCZ)の早期発症と神経イメージング法の開発において、構造変化が脳内で徹底的に研究されている。
本研究の目的は,認知正常 (CN) と磁気共鳴画像 (MRI) を用いたSCZの2種類の分類を効果的に行うことである。
本稿では,MRI画像を用いたSCZ診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
提案モデルでは,3次元MRIスキャンから空間的特徴とスペクトル的特徴を同時に抽出するために軽量な3次元CNNを用い,アンサンブルバッグ分類器を用いて分類を行う。
アンサンブルバグング分類器は、過剰フィッティングの防止、分散の低減、モデルの精度の向上に寄与する。
提案アルゴリズムは,MCICShare,COBRE,fBRINPhase-IIという,オープンソースとして利用可能な3つのベンチマークデータベースから抽出したデータセットで検証される。
これらのデータセットは、すべてのMRIイメージを標準テンプレートに登録し、アーティファクトを減らすための前処理ステップを実行している。
精度は92.22%、感度94.44%、特異性90%、精度90.43%、リコール94.44%、f1-score92.39%、g-mean92.19%である。
SCZの自動的正確な診断のために,このモデルを用いて臨床医を支援した。
関連論文リスト
- A CNN Approach to Automated Detection and Classification of Brain Tumors [0.0]
本研究の目的は、提供されたMRIデータを分析して、健康な脳組織と脳腫瘍を分類することである。
モデル作成に使用されるデータセットは、3,264個の脳MRIスキャンを含む、一般にアクセス可能で検証された脳腫瘍分類(MRI)データベースである。
論文 参考訳(メタデータ) (2025-02-13T19:33:26Z) - Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning [0.15749416770494706]
定量的MRI(qMRI)を利用したシーケンス不変な自己教師型フレームワークを提案する。
健常脳セグメンテーション(IXI)、脳梗塞セグメンテーション(ARC)、MRIによるデノイング実験は、ベースラインSSLアプローチよりも有意な増加を示した。
また,本モデルは,よりスケーラブルで臨床的に信頼性の高いボリューム分析の可能性を示した。
論文 参考訳(メタデータ) (2025-01-21T11:27:54Z) - MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
正規化3次元拡散モデルと最適化手法を組み合わせた3次元MRI再構成法を提案する。
拡散に基づく事前処理を取り入れることで,画像品質の向上,ノイズの低減,3次元MRI再構成の全体的な忠実度の向上を実現した。
論文 参考訳(メタデータ) (2024-12-25T00:55:05Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-01-17T10:39:39Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
畳み込みニューラルネットワーク(CNN)は最先端の画像セグメンテーション技術である。
CNNはトレーニングに大量の注釈付きデータセットを必要とする。
自己教師型学習戦略は、トレーニングにラベルのないデータを活用することができる。
論文 参考訳(メタデータ) (2021-05-24T12:27:06Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
本研究では、メモリ消費を低減し、アンバランスデータの影響を低減するためにパッチベースの技術で訓練された3Dエンコーダデコーダアーキテクチャを検討する。
また,テストタイム・ドロップアウト (TTD) とデータ拡張 (TTA) を用いて, てんかん, てんかんともにボキセル関連不確実性情報を導入する。
この研究で提案されたモデルと不確実性推定測定は、腫瘍の分割と不確実性推定に関するタスク1および3のBraTS'20チャレンジで使用されています。
論文 参考訳(メタデータ) (2020-12-30T19:28:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。