Can a Large Language Model Learn Matrix Functions In Context?
- URL: http://arxiv.org/abs/2411.15675v1
- Date: Sun, 24 Nov 2024 00:33:43 GMT
- Title: Can a Large Language Model Learn Matrix Functions In Context?
- Authors: Paimon Goulart, Evangelos E. Papalexakis,
- Abstract summary: Large Language Models (LLMs) have demonstrated the ability to solve complex tasks through In-Context Learning (ICL)
This paper explores the capacity of LLMs to solve non-linear numerical computations, with specific emphasis on functions of the Singular Value Decomposition.
- Score: 3.7478782183628634
- License:
- Abstract: Large Language Models (LLMs) have demonstrated the ability to solve complex tasks through In-Context Learning (ICL), where models learn from a few input-output pairs without explicit fine-tuning. In this paper, we explore the capacity of LLMs to solve non-linear numerical computations, with specific emphasis on functions of the Singular Value Decomposition. Our experiments show that while LLMs perform comparably to traditional models such as Stochastic Gradient Descent (SGD) based Linear Regression and Neural Networks (NN) for simpler tasks, they outperform these models on more complex tasks, particularly in the case of top-k Singular Values. Furthermore, LLMs demonstrate strong scalability, maintaining high accuracy even as the matrix size increases. Additionally, we found that LLMs can achieve high accuracy with minimal prior examples, converging quickly and avoiding the overfitting seen in classical models. These results suggest that LLMs could provide an efficient alternative to classical methods for solving high-dimensional problems. Future work will focus on extending these findings to larger matrices and more complex matrix operations while exploring the effect of using different numerical representations in ICL.
Related papers
- Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis.
In this study, we assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection.
Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data.
arXiv Detail & Related papers (2024-10-16T07:47:31Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
We show that it is possible to significantly improve the performance of Large Language Models by selectively removing higher-order components of their weight matrices.
This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed.
We show extensive experiments demonstrating the generality of this finding across language models and datasets.
arXiv Detail & Related papers (2023-12-21T03:51:08Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.