PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments
- URL: http://arxiv.org/abs/2411.15800v1
- Date: Sun, 24 Nov 2024 12:00:55 GMT
- Title: PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments
- Authors: Haoang Li, Xiangqi Meng, Xingxing Zuo, Zhe Liu, Hesheng Wang, Daniel Cremers,
- Abstract summary: We propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting.
Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera.
Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation.
- Score: 49.38692556283867
- License:
- Abstract: Simultaneous localization and mapping (SLAM) has achieved impressive performance in static environments. However, SLAM in dynamic environments remains an open question. Many methods directly filter out dynamic objects, resulting in incomplete scene reconstruction and limited accuracy of camera localization. The other works express dynamic objects by point clouds, sparse joints, or coarse meshes, which fails to provide a photo-realistic representation. To overcome the above limitations, we propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting. Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera. To map the foreground, we focus on modeling the deformations and/or motions. We consider the shape priors of humans and exploit geometric and appearance constraints of humans and items. For background mapping, we design an optimization strategy between neighboring local maps by integrating appearance constraint into geometric alignment. As to camera localization, we leverage both static background and dynamic foreground to increase the observations for noise compensation. We explore the geometric and appearance constraints by associating 3D Gaussians with 2D optical flows and pixel patches. Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation. Source codes will be publicly available upon paper acceptance.
Related papers
- V3D-SLAM: Robust RGB-D SLAM in Dynamic Environments with 3D Semantic Geometry Voting [1.3493547928462395]
Simultaneous localization and mapping (SLAM) in highly dynamic environments is challenging due to the correlation between moving objects and the camera pose.
We propose a robust method, V3D-SLAM, to remove moving objects via two lightweight re-evaluation stages.
Our experiment on the TUM RGB-D benchmark on dynamic sequences with ground-truth camera trajectories showed that our methods outperform the most recent state-of-the-art SLAM methods.
arXiv Detail & Related papers (2024-10-15T21:08:08Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Bridging 3D Gaussian and Mesh for Freeview Video Rendering [57.21847030980905]
GauMesh bridges the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes.
We show that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - 3DS-SLAM: A 3D Object Detection based Semantic SLAM towards Dynamic
Indoor Environments [1.4901625182926226]
We introduce 3DS-SLAM, 3D Semantic SLAM, tailored for dynamic scenes with visual 3D object detection.
The 3DS-SLAM is a tightly-coupled algorithm resolving both semantic and geometric constraints sequentially.
It exhibits an average improvement of 98.01% across the dynamic sequences of the TUM RGB-D dataset.
arXiv Detail & Related papers (2023-10-10T07:48:40Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Towards High-Fidelity Single-view Holistic Reconstruction of Indoor
Scenes [50.317223783035075]
We present a new framework to reconstruct holistic 3D indoor scenes from single-view images.
We propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction.
Our code and model will be made publicly available.
arXiv Detail & Related papers (2022-07-18T14:54:57Z) - TwistSLAM: Constrained SLAM in Dynamic Environment [0.0]
We present TwistSLAM, a semantic, dynamic, stereo SLAM system that can track dynamic objects in the scene.
Our algorithm creates clusters of points according to their semantic class.
It uses the static parts of the environment to robustly localize the camera and tracks the remaining objects.
arXiv Detail & Related papers (2022-02-24T22:08:45Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.