Dy3DGS-SLAM: Monocular 3D Gaussian Splatting SLAM for Dynamic Environments
- URL: http://arxiv.org/abs/2506.05965v1
- Date: Fri, 06 Jun 2025 10:43:41 GMT
- Title: Dy3DGS-SLAM: Monocular 3D Gaussian Splatting SLAM for Dynamic Environments
- Authors: Mingrui Li, Yiming Zhou, Hongxing Zhou, Xinggang Hu, Florian Roemer, Hongyu Wang, Ahmad Osman,
- Abstract summary: We propose Dy3DGS-SLAM, the first 3D Gaussian Splatting (3DGS) SLAM method for dynamic scenes using monocular RGB input.<n>Results demonstrate that Dy3DGS-SLAM achieves state-of-the-art tracking and rendering in dynamic environments.
- Score: 5.050525952210101
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current Simultaneous Localization and Mapping (SLAM) methods based on Neural Radiance Fields (NeRF) or 3D Gaussian Splatting excel in reconstructing static 3D scenes but struggle with tracking and reconstruction in dynamic environments, such as real-world scenes with moving elements. Existing NeRF-based SLAM approaches addressing dynamic challenges typically rely on RGB-D inputs, with few methods accommodating pure RGB input. To overcome these limitations, we propose Dy3DGS-SLAM, the first 3D Gaussian Splatting (3DGS) SLAM method for dynamic scenes using monocular RGB input. To address dynamic interference, we fuse optical flow masks and depth masks through a probabilistic model to obtain a fused dynamic mask. With only a single network iteration, this can constrain tracking scales and refine rendered geometry. Based on the fused dynamic mask, we designed a novel motion loss to constrain the pose estimation network for tracking. In mapping, we use the rendering loss of dynamic pixels, color, and depth to eliminate transient interference and occlusion caused by dynamic objects. Experimental results demonstrate that Dy3DGS-SLAM achieves state-of-the-art tracking and rendering in dynamic environments, outperforming or matching existing RGB-D methods.
Related papers
- Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline [64.42938561167402]
We propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module.<n>This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed.<n>Our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90%.
arXiv Detail & Related papers (2025-08-06T16:16:58Z) - Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM [0.0]
D4DGS-SLAM is the first SLAM method based on 4DGS map representation for dynamic environments.<n>We show that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
arXiv Detail & Related papers (2025-04-07T08:56:35Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM [9.060527946525381]
We propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes.<n>In terms of tracking, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels.<n>Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods.
arXiv Detail & Related papers (2025-02-05T14:44:17Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - V3D-SLAM: Robust RGB-D SLAM in Dynamic Environments with 3D Semantic Geometry Voting [1.3493547928462395]
Simultaneous localization and mapping (SLAM) in highly dynamic environments is challenging due to the correlation between moving objects and the camera pose.
We propose a robust method, V3D-SLAM, to remove moving objects via two lightweight re-evaluation stages.
Our experiment on the TUM RGB-D benchmark on dynamic sequences with ground-truth camera trajectories showed that our methods outperform the most recent state-of-the-art SLAM methods.
arXiv Detail & Related papers (2024-10-15T21:08:08Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
arXiv Detail & Related papers (2024-01-02T12:35:03Z) - 3DS-SLAM: A 3D Object Detection based Semantic SLAM towards Dynamic
Indoor Environments [1.4901625182926226]
We introduce 3DS-SLAM, 3D Semantic SLAM, tailored for dynamic scenes with visual 3D object detection.
The 3DS-SLAM is a tightly-coupled algorithm resolving both semantic and geometric constraints sequentially.
It exhibits an average improvement of 98.01% across the dynamic sequences of the TUM RGB-D dataset.
arXiv Detail & Related papers (2023-10-10T07:48:40Z) - Dynamic Mesh-Aware Radiance Fields [75.59025151369308]
This paper designs a two-way coupling between mesh and NeRF during rendering and simulation.
We show that a hybrid system approach outperforms alternatives in visual realism for mesh insertion.
arXiv Detail & Related papers (2023-09-08T20:18:18Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects.
To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error.
Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.
arXiv Detail & Related papers (2020-09-30T18:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.