論文の概要: A Multiparametric Class of Low-complexity Transforms for Image and Video
Coding
- arxiv url: http://arxiv.org/abs/2006.11418v1
- Date: Fri, 19 Jun 2020 21:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:24:14.967715
- Title: A Multiparametric Class of Low-complexity Transforms for Image and Video
Coding
- Title(参考訳): 画像・映像符号化のための低複素変換のマルチパラメトリッククラス
- Authors: D. R. Canterle, T. L. T. da Silveira, F. M. Bayer, R. J. Cintra
- Abstract要約: 本稿では,Bouguezel,Ahmed,Swamyの一連の論文に基づいて,低複素度8点DCT近似の新たなクラスを導入する。
最適DCT近似は、符号化効率と画像品質の指標の点で魅力的な結果を示すことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete transforms play an important role in many signal processing
applications, and low-complexity alternatives for classical transforms became
popular in recent years. Particularly, the discrete cosine transform (DCT) has
proven to be convenient for data compression, being employed in well-known
image and video coding standards such as JPEG, H.264, and the recent high
efficiency video coding (HEVC). In this paper, we introduce a new class of
low-complexity 8-point DCT approximations based on a series of works published
by Bouguezel, Ahmed and Swamy. Also, a multiparametric fast algorithm that
encompasses both known and novel transforms is derived. We select the
best-performing DCT approximations after solving a multicriteria optimization
problem, and submit them to a scaling method for obtaining larger size
transforms. We assess these DCT approximations in both JPEG-like image
compression and video coding experiments. We show that the optimal DCT
approximations present compelling results in terms of coding efficiency and
image quality metrics, and require only few addition or bit-shifting
operations, being suitable for low-complexity and low-power systems.
- Abstract(参考訳): 離散変換は多くの信号処理アプリケーションにおいて重要な役割を担い、近年は古典変換の低複雑さな代替手段が普及している。
特に離散コサイン変換(dct)はデータ圧縮に便利であることが証明されており、jpeg、h.264、最近の高効率ビデオ符号化(hevc)などの画像およびビデオ符号化標準に採用されている。
本稿では,Bouguezel,Ahmed,Swamyの一連の論文に基づいて,低複雑性8点DCT近似の新たなクラスを導入する。
また、既知の変換と新しい変換の両方を含むマルチパラメトリック高速アルゴリズムを導出する。
マルチ基準最適化問題を解いた上で最高のDCT近似を選定し,より大規模な変換を得るためのスケーリング手法に提案する。
JPEGライクな画像圧縮とビデオ符号化実験の両方において,これらのDCT近似を評価する。
最適DCT近似は、符号化効率と画像品質の指標で魅力的な結果を示し、低複雑さ・低消費電力システムに適した加算やビットシフト操作は少ない。
関連論文リスト
- Variable-size Symmetry-based Graph Fourier Transforms for image compression [65.7352685872625]
可変サイズのグラフフーリエ変換を符号化フレームワークに導入する。
提案アルゴリズムは,ノード間の特定の対称接続を追加することにより,グリッド上の対称グラフを生成する。
実験により、SBGFTは、明示的な多重変換選択に統合された一次変換よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-11-24T13:00:44Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
我々は、より単純で効果的なTranformerベースのチャネルワイド自動回帰事前モデルを提案し、絶対画像圧縮変換器(ICT)を実現する。
提案したICTは、潜在表現からグローバルとローカルの両方のコンテキストをキャプチャできる。
我々は、サンドイッチのConvNeXtベースのプリ/ポストプロセッサで学習可能なスケーリングモジュールを活用し、よりコンパクトな潜在表現を正確に抽出する。
論文 参考訳(メタデータ) (2023-07-12T11:32:02Z) - Low-Complexity Loeffler DCT Approximations for Image and Video Coding [0.0]
本稿では,ローフラー離散コサイン変換(DCT)アルゴリズムに基づく行列パラメトリゼーション手法を提案する。
数個の8点DCT近似の数学的形式を統一する8点DCT近似の新しいクラスが提案された。
論文 参考訳(メタデータ) (2022-07-29T03:56:18Z) - DCT Approximations Based on Chen's Factorization [0.17205106391379021]
2つの8点乗算自由DCT近似を提案し、その高速アルゴリズムも導出する。
JPEGライクな画像圧縮方式による実験を行い、競合する手法と比較した。
新しい変換セットをHEVCリファレンスソフトウェアに組み込み、HEVC準拠のビデオ符号化スキームを提供する。
論文 参考訳(メタデータ) (2022-07-24T02:31:28Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Towards End-to-End Image Compression and Analysis with Transformers [99.50111380056043]
本稿では,クラウドベースの画像分類アプリケーションを対象として,トランスフォーマーを用いたエンドツーエンドの画像圧縮解析モデルを提案する。
我々は、圧縮された特徴から画像分類を行うためにビジョントランスフォーマー(ViT)モデルを再設計し、トランスフォーマーからの長期情報を用いて画像圧縮を容易にすることを目指している。
画像圧縮と分類作業の両方において,提案モデルの有効性を示す実験結果が得られた。
論文 参考訳(メタデータ) (2021-12-17T03:28:14Z) - Generating Images with Sparse Representations [21.27273495926409]
画像の高次元化は、確率に基づく生成モデルのアーキテクチャとサンプリング効率の課題を示す。
JPEGのような一般的な画像圧縮法に触発された代替手法を提示し、画像を量子化された離散コサイン変換(DCT)ブロックに変換する。
本稿では,次の要素の条件分布を逐次的に予測するトランスフォーマに基づく自己回帰型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-05T17:56:03Z) - Learned Multi-Resolution Variable-Rate Image Compression with
Octave-based Residual Blocks [15.308823742699039]
一般化オクターブ畳み込み(GoConv)と一般化オクターブ畳み込み(GoTConv)を用いた新しい可変レート画像圧縮フレームワークを提案する。
単一モデルが異なるビットレートで動作し、複数レートの画像特徴を学習できるようにするため、新しい目的関数が導入される。
実験結果から,H.265/HEVCベースのBPGや最先端の学習に基づく可変レート法などの標準コーデックよりも高い性能を示した。
論文 参考訳(メタデータ) (2020-12-31T06:26:56Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
本稿では,標準デコーダによる符号化性能向上のための学習法を提案する。
具体的には、DCT係数の分布を最適化する周波数領域事前編集法を提案する。
JPEGデコーダは変更しないので、広く使われている標準JPEGデコーダで画像を見る際には、我々のアプローチが適用可能である。
論文 参考訳(メタデータ) (2020-09-27T19:24:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。