論文の概要: LLMs Do Not Think Step-by-step In Implicit Reasoning
- arxiv url: http://arxiv.org/abs/2411.15862v1
- Date: Sun, 24 Nov 2024 14:38:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:15.106961
- Title: LLMs Do Not Think Step-by-step In Implicit Reasoning
- Title(参考訳): LLMはインシシデント推論に一歩も一歩も踏み出さない
- Authors: Yijiong Yu,
- Abstract要約: チェーン・オブ・ソートは複雑なタスクにおけるLCMの性能を著しく向上させることができる。
多くの研究は、中間ステップを明示的に生成するLLMを必要としない暗黙のCoTの使用を試みた。
本研究では,暗黙的にCoTを行う場合,モデルが隠蔽状態から中間段階の情報を探索する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. But there is still gap between their efficacy and typical explicit CoT methods. This leaves us a doubt that, does implicit CoT really equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is performing implicit CoT. The results surprisingly indicate that LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. Moreover, we find LLMs' implicit reasoning capabilities are susceptible and unstable, reaffirming the necessity of explicit CoT to effectively support complex tasks.
- Abstract(参考訳): Chain-of-Thought が複雑なタスクにおける LLM の性能を著しく向上させることはよく知られている。
しかし、推論速度が遅く、計算コストも高いため、多くの研究は、中間ステップを明示的に生成するLLMを必要としない暗黙のCoTの使用を試みた。
しかし、それらの効果と典型的なCoT法の間にはまだギャップがある。
これは、暗黙のCoTが暗黙のCoTと本当に同等なのだろうか?
そこで本研究では,実験を通じてこの問題に対処する。
暗黙的にCoTを行う場合、モデルが隠された状態から中間ステップに関する情報を探索する。
その結果、LSMは中間段階についてほとんど考えておらず、厳格なステップバイステップの推論よりも経験に頼っている可能性が示唆された。
さらに、LLMの暗黙的推論能力は感受性が高く不安定であり、複雑なタスクを効果的にサポートするための明示的なCoTの必要性を再確認する。
関連論文リスト
- Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける情報ゲインの定量化を行い、障害モードの識別を可能にする。
提案手法の有効性を,玩具およびGSM-8Kデータに対する広範囲な実験により実証し,既存の結果に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-Thought (CoT) は,大規模言語モデル (LLM) から推論能力を引き出すデファクト手法である。
私たちは、CoTが主に数学や論理学を含むタスクに強いパフォーマンス上の利点をもたらし、他のタスクよりもはるかに少ない利益をもたらすことを示しています。
論文 参考訳(メタデータ) (2024-09-18T17:55:00Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of- Thought (ToT) 法では、ツリー探索を用いて推論空間を広範囲に探索し、CoTデコーディングが見落としてしまうかもしれない推論経路をよりよく見つける。
ToTで構築された検索ツリーを利用した細調整言語モデル(LLMs)により、CoTは同様のあるいはより良いパフォーマンスを実現することができる。
これはCPO(Chain of Preference Optimization)によって実現され、LLMはCoT推論パスの各ステップをToTのステップと整列するように微調整される。
論文 参考訳(メタデータ) (2024-06-13T14:07:02Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Can Separators Improve Chain-of-Thought Prompting? [10.398343318429367]
CoTプロンプトは大規模言語モデル(LLM)の推論能力を改善するためのシンプルで効果的な方法である
人間の認知にインスパイアされたCOT-SEP(COT-SEP)は,CoTプロンプトにおける各指数の最後にセパレータを戦略的に採用する手法である。
論文 参考訳(メタデータ) (2024-02-16T12:46:16Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
思考の連鎖(CoT)は、大きな言語モデルの推論能力を改善する上で重要である。
プロンプトにおけるCoTの有効性と推論ステップの長さの相関について検討した。
論文 参考訳(メタデータ) (2024-01-10T04:37:38Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
我々は検索(RR)で再考する新しいポストプロセッシング手法を提案する。
RRは、チェーン・オブ・シークレット・プロンプトから得られた推論ステップに基づいて、関連する外部知識を検索する。
複雑な3つの推論課題に対する GPT-3 を用いた広範囲な実験により RR の有効性を評価する。
論文 参考訳(メタデータ) (2022-12-31T22:35:34Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。