論文の概要: SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
- arxiv url: http://arxiv.org/abs/2502.12134v1
- Date: Mon, 17 Feb 2025 18:52:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:09.399857
- Title: SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
- Title(参考訳): ソフトCoT:LLMによる効率的な推論のためのソフトチェーン
- Authors: Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao,
- Abstract要約: CoT(Chain-of-Thought)推論により、LLM(Large Language Models)は複雑な推論タスクを解くことができる。
本稿では,LLMの変更を必要としない連続空間推論のための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 48.28847964704554
- License:
- Abstract: Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM. Specifically, we employ a lightweight assistant model to generate instance-specific soft thought tokens speculatively as the initial chain of thoughts, which are then mapped into the LLM's representation space via a projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning.
- Abstract(参考訳): CoT(Chain-of-Thought)推論により、中間推論ステップを生成することで、LLM(Large Language Models)が複雑な推論タスクを解決することができる。
しかし、既存のほとんどのアプローチはハードトークンの復号化に焦点を当てており、これは離散的な語彙空間内で推論を制約し、常に最適であるとは限らない。
最近の研究は連続空間推論を探求しているが、それらはしばしば破滅的な忘れ込みに悩まされ、その適用範囲はゼロショット設定で既に適切に指示された最先端のLLMに限られている。
そこで本研究では,LLMの変更を必要としない連続空間推論手法を提案する。
具体的には、インスタンス固有のソフトシンキングトークンを初期チェーンとして投機的に生成するために軽量なアシスタントモデルを使用し、プロジェクションモジュールを介してLCMの表現空間にマッピングする。
5つの推論ベンチマークによる実験結果から,本手法は教師付きパラメータ効率の微調整によりLCM推論性能を向上させることが示された。
関連論文リスト
- Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Can Separators Improve Chain-of-Thought Prompting? [10.398343318429367]
CoTプロンプトは大規模言語モデル(LLM)の推論能力を改善するためのシンプルで効果的な方法である
人間の認知にインスパイアされたCOT-SEP(COT-SEP)は,CoTプロンプトにおける各指数の最後にセパレータを戦略的に採用する手法である。
論文 参考訳(メタデータ) (2024-02-16T12:46:16Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - Assessing Step-by-Step Reasoning against Lexical Negation: A Case Study
on Syllogism [19.590120229602103]
大規模言語モデル(LLM)は、ステップバイステップの推論命令、例えばチェーン・オブ・シント(CoT)プロンプトを利用する。
本研究では, 否定に着目したLCMのステップバイステップ推論能力について検討する。
論文 参考訳(メタデータ) (2023-10-23T12:40:41Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。