論文の概要: LLMs Do Not Think Step-by-step In Implicit Reasoning
- arxiv url: http://arxiv.org/abs/2411.15862v2
- Date: Wed, 04 Dec 2024 05:52:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:00.199391
- Title: LLMs Do Not Think Step-by-step In Implicit Reasoning
- Title(参考訳): LLMはインシシデント推論に一歩も一歩も踏み出さない
- Authors: Yijiong Yu,
- Abstract要約: チェーン・オブ・ソートは複雑なタスクにおけるLCMの性能を著しく向上させることができる。
多くの研究は、中間ステップを明示的に生成するLLMを必要としない暗黙のCoTの使用を試みた。
本研究では,暗黙的にCoTを行う場合,モデルが隠蔽状態から中間段階の情報を探索する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. But there is still gap between their efficacy and typical explicit CoT methods. This leaves us a doubt that, does implicit CoT really equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is performing implicit CoT. The results surprisingly indicate that LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. Moreover, we find LLMs' implicit reasoning capabilities are susceptible and unstable, reaffirming the necessity of explicit CoT to effectively support complex tasks.
- Abstract(参考訳): Chain-of-Thought が複雑なタスクにおける LLM の性能を著しく向上させることはよく知られている。
しかし、推論速度が遅く、計算コストも高いため、多くの研究は、中間ステップを明示的に生成するLLMを必要としない暗黙のCoTの使用を試みた。
しかし、それらの効果と典型的なCoT法の間にはまだギャップがある。
これは、暗黙のCoTが暗黙のCoTと本当に同等なのだろうか?
そこで本研究では,実験を通じてこの問題に対処する。
暗黙的にCoTを行う場合、モデルが隠された状態から中間ステップに関する情報を探索する。
その結果、LSMは中間段階についてほとんど考えておらず、厳格なステップバイステップの推論よりも経験に頼っている可能性が示唆された。
さらに、LLMの暗黙的推論能力は感受性が高く不安定であり、複雑なタスクを効果的にサポートするための明示的なCoTの必要性を再確認する。
関連論文リスト
- SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
CoT(Chain-of-Thought)推論により、LLM(Large Language Models)は複雑な推論タスクを解くことができる。
本稿では,LLMの変更を必要としない連続空間推論のための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:52:29Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
CoT推論は大規模言語モデル(LLM)の多段階推論能力を高める
しかし、ほとんどのモデルやタスクでは、CoT長の増加は一貫して推論精度の向上につながりますか?
本稿では, 推論ステップの数が増加するにつれて, 性能は向上するが, 最終的には低下する,というニュアンスな関係を観察する。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-Thought (CoT) は,大規模言語モデル (LLM) から推論能力を引き出すデファクト手法である。
私たちは、CoTが主に数学や論理学を含むタスクに強いパフォーマンス上の利点をもたらし、他のタスクよりもはるかに少ない利益をもたらすことを示しています。
論文 参考訳(メタデータ) (2024-09-18T17:55:00Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of- Thought (ToT) 法では、ツリー探索を用いて推論空間を広範囲に探索し、CoTデコーディングが見落としてしまうかもしれない推論経路をよりよく見つける。
ToTで構築された検索ツリーを利用した細調整言語モデル(LLMs)により、CoTは同様のあるいはより良いパフォーマンスを実現することができる。
これはCPO(Chain of Preference Optimization)によって実現され、LLMはCoT推論パスの各ステップをToTのステップと整列するように微調整される。
論文 参考訳(メタデータ) (2024-06-13T14:07:02Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Can Separators Improve Chain-of-Thought Prompting? [10.398343318429367]
CoTプロンプトは大規模言語モデル(LLM)の推論能力を改善するためのシンプルで効果的な方法である
人間の認知にインスパイアされたCOT-SEP(COT-SEP)は,CoTプロンプトにおける各指数の最後にセパレータを戦略的に採用する手法である。
論文 参考訳(メタデータ) (2024-02-16T12:46:16Z) - Chain-of-Thought Reasoning Without Prompting [40.92854235219315]
CoT推論パスは、テキストデコーディングプロセスを変更するだけで、事前訓練された言語モデルから引き出すことができる。
復号経路におけるCoTの存在は、モデルの復号解に対する高い信頼と相関する。
論文 参考訳(メタデータ) (2024-02-15T18:55:41Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
本稿では,直接推論 (DR) と間接推論 (IR) を並列な複数の推論経路として考慮し,最終解を導出する直接間接推論 (DIR) 手法を提案する。
我々のDIR法は単純だが有効であり、既存のCoT法と簡単に統合できる。
論文 参考訳(メタデータ) (2024-02-06T03:41:12Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
思考の連鎖(CoT)は、大きな言語モデルの推論能力を改善する上で重要である。
プロンプトにおけるCoTの有効性と推論ステップの長さの相関について検討した。
論文 参考訳(メタデータ) (2024-01-10T04:37:38Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。