ShaNQar: Simulator of Network Quantique
- URL: http://arxiv.org/abs/2411.15865v1
- Date: Sun, 24 Nov 2024 14:59:21 GMT
- Title: ShaNQar: Simulator of Network Quantique
- Authors: Anand Choudhary, Ajay Wasan,
- Abstract summary: ShaNQar (Simulator of Network Quantique) is a modular and customizable photonic quantum network simulator.
It enables adaptive timing control and synchronization with virtually no simulation time resolution limit.
We successfully simulated previous real-life experimental setups for Quantum Key Distribution (QKD) and quantum teleportation.
- Score: 0.13654846342364307
- License:
- Abstract: The nature-inspired field of quantum communication has witnessed exciting developments over the past few years with countries all over the world working hard to scale their experimental quantum networks to larger sizes and increased coverage. Evidently, quantum network simulators are the need of the hour as they provide a framework for tuning hardware parameters, optimizing control protocols, and testing configurations of large and complex quantum networks before their deployment in the real world. In this work, we present ShaNQar (Simulator of Network Quantique): a modular and customizable photonic quantum network simulator. It comprises models of components such as photons, lasers, neutral density filters, sources of entangled photon pairs, communication channels, mirrors, waveplates, beam splitters, single photon detectors, and nodes which incorporate a diverse set of tunable parameters for variability and versatility. It enables adaptive timing control and synchronization with virtually no simulation time resolution limit and features a 'plug and play' design for faster coding and efficient execution. We successfully simulated previous real-life experimental setups for Quantum Key Distribution (QKD) and quantum teleportation, thereby, demonstrating the reliability and accuracy of ShaNQar.
Related papers
- Simulators for Quantum Network Modelling: A Comprehensive Review [0.10742675209112622]
We present a review of, to the best of our knowledge, currently used toolkits for modeling quantum networks.
With these toolkits and standardized validation techniques, we can lay down the foundations for more accurate and reliable quantum network simulators.
arXiv Detail & Related papers (2024-08-21T21:07:46Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - TensorCircuit: a Quantum Software Framework for the NISQ Era [18.7784080447382]
Written purely in Python,Circuit supports automatic differentiation, just-in-time compilation, vectorized parallelism and hardware acceleration.
Circuit can simulate up to 600 qubits with moderate depth and low-dimensional connectivity.
arXiv Detail & Related papers (2022-05-20T11:23:30Z) - QuISP: a Quantum Internet Simulation Package [0.6501025489527174]
QuISP is designed to simulate large-scale quantum networks to investigate their behavior under realistic, noisy and heterogeneous configurations.
This simulator promotes the development of protocols for larger and more complex quantum networks.
arXiv Detail & Related papers (2021-12-14T01:18:50Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.