Distribution-aware Online Continual Learning for Urban Spatio-Temporal Forecasting
- URL: http://arxiv.org/abs/2411.15893v1
- Date: Sun, 24 Nov 2024 16:03:16 GMT
- Title: Distribution-aware Online Continual Learning for Urban Spatio-Temporal Forecasting
- Authors: Chengxin Wang, Gary Tan, Swagato Barman Roy, Beng Chin Ooi,
- Abstract summary: Urban Previous-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning.
In this paper, we first analyze the distribution shifts in urban ST data, and then introduce DOST, a novel online continual learning framework tailored for ST data.
DOST employs an adaptive ST network equipped with a variable-independent adapter to address the unique distribution shifts each urban location dynamically.
- Score: 9.160791711627093
- License:
- Abstract: Urban spatio-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning. Previous studies focus on modeling ST correlations among urban locations in offline settings, which often neglect the non-stationary nature of urban ST data, particularly, distribution shifts over time. This oversight can lead to degraded performance in real-world scenarios. In this paper, we first analyze the distribution shifts in urban ST data, and then introduce DOST, a novel online continual learning framework tailored for ST data characteristics. DOST employs an adaptive ST network equipped with a variable-independent adapter to address the unique distribution shifts at each urban location dynamically. Further, to accommodate the gradual nature of these shifts, we also develop an awake-hibernate learning strategy that intermittently fine-tunes the adapter during the online phase to reduce computational overhead. This strategy integrates a streaming memory update mechanism designed for urban ST sequential data, enabling effective network adaptation to new patterns while preventing catastrophic forgetting. Experimental results confirm DOST's superiority over state-of-the-art models on four real-world datasets, providing online forecasts within an average of 0.1 seconds and achieving a 12.89% reduction in forecast errors compared to baseline models.
Related papers
- STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
Traffic is a cornerstone of smart city management enabling efficient allocation and transportation planning.
Deep learning, with its ability to capture complex nonlinear patterns in data, has emerged as a powerful tool for traffic forecasting.
graph neural networks (GCNs) and transformer-based models have shown promise, but their computational demands often hinder their application to realworld networks.
We propose a noveltemporal graph transformer (STG) architecture, enabling efficient modeling of both global and local traffic patterns while maintaining a manageable computational footprint.
arXiv Detail & Related papers (2024-10-01T04:15:48Z) - EasyST: A Simple Framework for Spatio-Temporal Prediction [18.291117879544945]
We propose a simple framework for spatial-temporal prediction - EasyST paradigm.
It learns lightweight and robust Multi-Layer Perceptrons (MLPs) generalization by distilling knowledge from complex-temporal GNNs.
EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy.
arXiv Detail & Related papers (2024-09-10T11:40:01Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation [25.916891462152044]
We propose a novel generative pre-training framework, GPD, for intricate few-shot learning with urban knowledge transfer.
We recast a generative diffusion model, which generates tailored neural networks guided by prompts.
GPD consistently outperforms state-of-the-art baselines on datasets for tasks such as traffic speed prediction and crowd flow prediction.
arXiv Detail & Related papers (2024-02-19T08:11:26Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Self-Supervised Deconfounding Against Spatio-Temporal Shifts: Theory and
Modeling [48.09863133371918]
In this work, we formalize the problem by constructing a causal graph of past traffic data, future traffic data, and external ST contexts.
We show that the failure of prior arts in OOD traffic data is due to ST contexts acting as a confounder, i.e., the common cause for past data and future ones.
We devise a Spatio-Temporal sElf-superVised dEconfounding (STEVE) framework to encode traffic data into two disentangled representations for associating invariant and variant ST contexts.
arXiv Detail & Related papers (2023-11-21T09:33:13Z) - MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation [24.284969264008733]
We propose a new urban time series prediction model for the concept drift problem, which encodes the drift by considering the periodicity in the data.
Our design significantly outperforms state-of-the-art methods and can be well generalized to existing prediction backbones.
arXiv Detail & Related papers (2023-09-25T15:22:28Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z) - DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction [4.0711669706762805]
A novel deep learning traffic demand forecasting framework based on Deep Spatio-Temporal ConvLSTM is proposed in this paper.
The proposed method can capture temporal dependence and spatial dependence simultaneously.
The experimental results on DIDI order dataset of Chengdu demonstrate that our method outperforms traditional models with accuracy and speed.
arXiv Detail & Related papers (2020-08-22T13:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.