From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
- URL: http://arxiv.org/abs/2411.16027v1
- Date: Mon, 25 Nov 2024 01:01:54 GMT
- Title: From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
- Authors: Yan Miao, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, Danil Prokhorov, Sayan Mitra,
- Abstract summary: Testing Automated Driving Systems (ADS) in simulation with realistic driving scenarios is important for verifying their performance.
We propose a novel framework that automates the conversion of real-world car crash videos into detailed simulation scenarios.
Our preliminary results demonstrate substantial time efficiency, finishing the real-to-sim conversion in minutes with full automation and no human intervention.
- Score: 5.132984904858975
- License:
- Abstract: Testing Automated Driving Systems (ADS) in simulation with realistic driving scenarios is important for verifying their performance. However, converting real-world driving videos into simulation scenarios is a significant challenge due to the complexity of interpreting high-dimensional video data and the time-consuming nature of precise manual scenario reconstruction. In this work, we propose a novel framework that automates the conversion of real-world car crash videos into detailed simulation scenarios for ADS testing. Our approach leverages prompt-engineered Video Language Models(VLM) to transform dashcam footage into SCENIC scripts, which define the environment and driving behaviors in the CARLA simulator, enabling the generation of realistic simulation scenarios. Importantly, rather than solely aiming for one-to-one scenario reconstruction, our framework focuses on capturing the essential driving behaviors from the original video while offering flexibility in parameters such as weather or road conditions to facilitate search-based testing. Additionally, we introduce a similarity metric that helps iteratively refine the generated scenario through feedback by comparing key features of driving behaviors between the real and simulated videos. Our preliminary results demonstrate substantial time efficiency, finishing the real-to-sim conversion in minutes with full automation and no human intervention, while maintaining high fidelity to the original driving events.
Related papers
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model [6.144680854063938]
GenDDS is a novel approach for generating driving scenarios for autonomous driving systems.
We employ the KITTI dataset, which includes real-world driving videos, to train the model.
We demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios.
arXiv Detail & Related papers (2024-08-28T15:37:44Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
We present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle.
UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene.
We incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions.
arXiv Detail & Related papers (2023-08-03T17:56:06Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
We present an end-to-end trainable machine learning system capable of realistically simulating driving experiences.
This can be used for the verification of self-driving system performance without relying on expensive and time-consuming road testing.
arXiv Detail & Related papers (2021-05-26T05:14:23Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
We introduce a novel high-quality neural simulator referred to as DriveGAN.
DriveGAN achieves controllability by disentangling different components without supervision.
We train DriveGAN on multiple datasets, including 160 hours of real-world driving data.
arXiv Detail & Related papers (2021-04-30T15:30:05Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - A machine learning environment for evaluating autonomous driving
software [1.6516902135723865]
We present a machine learning environment for detecting autonomous vehicle corner case behavior.
Our environment is based on connecting the CARLA simulation software to machine learning framework and custom AI client software.
Our system can search for corner cases where the vehicle AI is unable to correctly understand the situation.
arXiv Detail & Related papers (2020-03-07T13:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.