Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression
- URL: http://arxiv.org/abs/2411.16119v1
- Date: Mon, 25 Nov 2024 06:05:08 GMT
- Title: Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression
- Authors: Xi Zhang, Xiaolin Wu,
- Abstract summary: Lattice vector quantization (LVQ) presents a compelling alternative, which can exploit inter-feature dependencies more effectively.
Traditional LVQ structures are designed/optimized for uniform source distributions.
We propose a novel learning method to overcome this weakness by designing the rate-distortion optimal lattice vector quantization codebooks.
- Score: 16.892815659154053
- License:
- Abstract: It is customary to deploy uniform scalar quantization in the end-to-end optimized Neural image compression methods, instead of more powerful vector quantization, due to the high complexity of the latter. Lattice vector quantization (LVQ), on the other hand, presents a compelling alternative, which can exploit inter-feature dependencies more effectively while keeping computational efficiency almost the same as scalar quantization. However, traditional LVQ structures are designed/optimized for uniform source distributions, hence nonadaptive and suboptimal for real source distributions of latent code space for Neural image compression tasks. In this paper, we propose a novel learning method to overcome this weakness by designing the rate-distortion optimal lattice vector quantization (OLVQ) codebooks with respect to the sample statistics of the latent features to be compressed. By being able to better fit the LVQ structures to any given latent sample distribution, the proposed OLVQ method improves the rate-distortion performances of the existing quantization schemes in neural image compression significantly, while retaining the amenability of uniform scalar quantization.
Related papers
- Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
We propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference.
We mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy.
Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation.
arXiv Detail & Related papers (2024-10-10T17:02:48Z) - Approaching Rate-Distortion Limits in Neural Compression with Lattice
Transform Coding [33.377272636443344]
neural compression design involves transforming the source to a latent vector, which is then rounded to integers and entropy coded.
We show that it is highly sub-optimal on i.i.d. sequences, and in fact always recovers scalar quantization of the original source sequence.
By employing lattice quantization instead of scalar quantization in the latent space, we demonstrate that Lattice Transform Coding (LTC) is able to recover optimal vector quantization at various dimensions.
arXiv Detail & Related papers (2024-03-12T05:09:25Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
decomposition of convolutional and fully-connected layers is an effective way to reduce parameters and FLOP in neural networks.
A conventional post-training quantization approach applied to networks with weights yields a drop in accuracy.
This motivated us to develop an algorithm that finds decomposed approximation directly with quantized factors.
arXiv Detail & Related papers (2023-08-08T21:38:02Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
A neural image compression network is governed by how well the entropy model matches the true distribution of the latent code.
In this paper, we propose a feature-level frequency disentanglement to help the relaxed scalar quantization achieve lower bit rates.
The proposed network not only outperforms hand-engineered codecs, but also neural network-based codecs built on-heavy spatially autoregressive entropy models.
arXiv Detail & Related papers (2023-08-04T14:55:44Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
We propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation.
Our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost.
arXiv Detail & Related papers (2023-05-30T04:00:35Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
We present a novel Lattice Vector Quantization scheme coupled with a spatially Adaptive Companding (LVQAC) mapping.
For any end-to-end CNN image compression models, replacing uniform quantizer by LVQAC achieves better rate-distortion performance without significantly increasing the model complexity.
arXiv Detail & Related papers (2023-03-25T23:34:15Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
latent variables with priors and hyperpriors is an essential problem in variational image compression.
We find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective.
Our model has better rate-distortion performance and an impressive $3.18times$ compression speed up.
arXiv Detail & Related papers (2022-03-21T11:44:17Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
Nonuniform-to-Uniform Quantization (N2UQ) is a method that can maintain the strong representation ability of nonuniform methods while being hardware-friendly and efficient.
N2UQ outperforms state-of-the-art nonuniform quantization methods by 0.71.8% on ImageNet.
arXiv Detail & Related papers (2021-11-29T18:59:55Z) - BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization [32.770842274996774]
Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks.
Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space.
This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity.
arXiv Detail & Related papers (2021-02-20T22:37:41Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.