Learn from Foundation Model: Fruit Detection Model without Manual Annotation
- URL: http://arxiv.org/abs/2411.16196v1
- Date: Mon, 25 Nov 2024 08:52:46 GMT
- Title: Learn from Foundation Model: Fruit Detection Model without Manual Annotation
- Authors: Yanan Wang, Zhenghao Fei, Ruichen Li, Yibin Ying,
- Abstract summary: Agriculture is one of the domains that lacks sufficient data.
This study proposes a framework to train effective, domain-specific, small models from foundation models without manual annotation.
- Score: 8.486694650855949
- License:
- Abstract: Recent breakthroughs in large foundation models have enabled the possibility of transferring knowledge pre-trained on vast datasets to domains with limited data availability. Agriculture is one of the domains that lacks sufficient data. This study proposes a framework to train effective, domain-specific, small models from foundation models without manual annotation. Our approach begins with SDM (Segmentation-Description-Matching), a stage that leverages two foundation models: SAM2 (Segment Anything in Images and Videos) for segmentation and OpenCLIP (Open Contrastive Language-Image Pretraining) for zero-shot open-vocabulary classification. In the second stage, a novel knowledge distillation mechanism is utilized to distill compact, edge-deployable models from SDM, enhancing both inference speed and perception accuracy. The complete method, termed SDM-D (Segmentation-Description-Matching-Distilling), demonstrates strong performance across various fruit detection tasks object detection, semantic segmentation, and instance segmentation) without manual annotation. It nearly matches the performance of models trained with abundant labels. Notably, SDM-D outperforms open-set detection methods such as Grounding SAM and YOLO-World on all tested fruit detection datasets. Additionally, we introduce MegaFruits, a comprehensive fruit segmentation dataset encompassing over 25,000 images, and all code and datasets are made publicly available at https://github.com/AgRoboticsResearch/SDM-D.git.
Related papers
- Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
We present a novel approach to adapt foundation models to address existing models' generalization dropback.
Among several models, our focus centers on the Segment Anything Model (SAM)
SAM does not offer recognition abilities and thus fails to classify and tag localized objects.
This novel approach augments SAM with recognition abilities, a first of its kind.
arXiv Detail & Related papers (2023-10-03T07:19:59Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models [7.452422412106768]
We propose a novel method named Text2Seg for remote sensing semantic segmentation.
It overcomes the dependency on extensive annotations by employing an automatic prompt generation process.
We show that Text2Seg significantly improves zero-shot prediction performance compared to the vanilla SAM model.
arXiv Detail & Related papers (2023-04-20T18:39:41Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains.
We reconcile the generalization and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
A model trained on MSeg ranks first on the WildDash-v1 leaderboard for robust semantic segmentation, with no exposure to WildDash data during training.
arXiv Detail & Related papers (2021-12-27T16:16:35Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
We propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets.
This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets.
In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing.
arXiv Detail & Related papers (2021-06-08T06:13:11Z) - Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for
Semantic Segmentation [34.790169990156684]
We focus on a more practical setting of semi-supervised domain adaptation (SSDA) where both a small set of labeled target data and large amounts of labeled source data are available.
Two kinds of data mixing methods are proposed to reduce domain gap in both region-level and sample-level respectively.
We can obtain two complementary domain-mixed teachers based on dual-level mixed data from holistic and partial views respectively.
arXiv Detail & Related papers (2021-03-08T12:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.