A Graph Neural Architecture Search Approach for Identifying Bots in Social Media
- URL: http://arxiv.org/abs/2411.16285v1
- Date: Mon, 25 Nov 2024 11:10:16 GMT
- Title: A Graph Neural Architecture Search Approach for Identifying Bots in Social Media
- Authors: Georgios Tzoumanekas, Michail Chatzianastasis, Loukas Ilias, George Kiokes, John Psarras, Dimitris Askounis,
- Abstract summary: We introduce the implementation of a Neural Architecture Search (NAS) technique, tailored to Graph Convolutional Networks (RGCs)
Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of RGCs.
We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models.
- Score: 6.811604745219853
- License:
- Abstract: Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots-automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
Related papers
- Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
We present a graph diffusion-based NAS approach that uses discrete conditional graph diffusion processes to generate high-performing neural network architectures.
We show promising results on six standard benchmarks, yielding novel and unique architectures at a fast speed.
arXiv Detail & Related papers (2024-03-09T21:45:31Z) - GraphPNAS: Learning Distribution of Good Neural Architectures via Deep
Graph Generative Models [48.57083463364353]
We study neural architecture search (NAS) through the lens of learning random graph models.
We propose GraphPNAS a deep graph generative model that learns a distribution of well-performing architectures.
We show that our proposed graph generator consistently outperforms RNN-based one and achieves better or comparable performances than state-of-the-art NAS methods.
arXiv Detail & Related papers (2022-11-28T09:09:06Z) - NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search [55.75621026447599]
We propose NAS-Bench-Graph, a tailored benchmark that supports unified, reproducible, and efficient evaluations for GraphNAS.
Specifically, we construct a unified, expressive yet compact search space, covering 26,206 unique graph neural network (GNN) architectures.
Based on our proposed benchmark, the performance of GNN architectures can be directly obtained by a look-up table without any further computation.
arXiv Detail & Related papers (2022-06-18T10:17:15Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - RoSGAS: Adaptive Social Bot Detection with Reinforced Self-Supervised
GNN Architecture Search [12.567692688720353]
Social bots are automated accounts on social networks that make attempts to behave like human.
In this paper, we propose RoSGAS, a novel Reinforced and Self-supervised GNN Architecture Search framework.
We exploit heterogeneous information network to present the user connectivity by leveraging account metadata, relationships, behavioral features and content features.
Experiments on 5 Twitter datasets show that RoSGAS outperforms the state-of-the-art approaches in terms of accuracy, training efficiency and stability.
arXiv Detail & Related papers (2022-06-14T11:12:02Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - A Variational Graph Autoencoder for Manipulation Action Recognition and
Prediction [1.1816942730023883]
We introduce a deep graph autoencoder to jointly learn recognition and prediction of manipulation tasks from symbolic scene graphs.
Our network has a variational autoencoder structure with two branches: one for identifying the input graph type and one for predicting the future graphs.
We benchmark our new model against different state-of-the-art methods on two different datasets, MANIAC and MSRC-9, and show that our proposed model can achieve better performance.
arXiv Detail & Related papers (2021-10-25T21:40:42Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Rethinking Graph Neural Network Search from Message-passing [120.62373472087651]
This paper proposes Graph Neural Architecture Search (GNAS) with novel-designed search space.
We design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations.
Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.
arXiv Detail & Related papers (2021-03-26T06:10:41Z) - NASGEM: Neural Architecture Search via Graph Embedding Method [41.0658375655084]
We propose NASGEM which stands for Neural Architecture Search via Graph Embedding Method.
It is driven by a novel graph embedding method equipped with similarity measures to capture the graph topology information.
It consistently outperforms networks crafted by existing search methods in classification tasks.
arXiv Detail & Related papers (2020-07-08T21:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.