Observation of quantized vortex in an atomic Bose-Einstein condensate at Dirac point
- URL: http://arxiv.org/abs/2411.16287v1
- Date: Mon, 25 Nov 2024 11:10:46 GMT
- Title: Observation of quantized vortex in an atomic Bose-Einstein condensate at Dirac point
- Authors: Yunda Li, Wei Han, Zengming Meng, Wenxin Yang, Cheng Chin, Jing Zhang,
- Abstract summary: We observe emergence of quantized vortices at the Dirac point based on atomic Bose-Einstein condensate in a graphene-like optical honeycomb lattice.
Our work provides a new way of generating vortices in a quantum gas, and the method is generic and can be applied to different types of optical lattices.
- Score: 7.160051413122568
- License:
- Abstract: When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points", gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectroscopy. While the topology of Dirac point in the momentum space is well studied theoretically, observation of topological defects in a many-body quantum systems at Dirac point remain an elusive goal. Based on atomic Bose-Einstein condensate in a graphene-like optical honeycomb lattice, we directly observe emergence of quantized vortices at the Dirac point. The phase diagram of lattice bosons at the Dirac point is revealed. Our work provides a new way of generating vortices in a quantum gas, and the method is generic and can be applied to different types of optical lattices with topological singularity, especially twisted bilayer optical lattices.
Related papers
- Topological Matter and Fractional Entangled Quantum Geometry through
Light [0.0]
We show that global topological properties are encoded from the poles of the surface allowing a correspondence between smooth fields, metric and quantum distance with the square of the topological number.
We develop the theory, "quantum topometry" in space and time, and present applications on transport from a Newtonian approach.
arXiv Detail & Related papers (2022-09-30T11:17:24Z) - Strongly dipolar gases in a one-dimensional lattice: Bloch oscillations
and matter-wave localization [0.0]
Adding a one-dimensional optical lattice creates a platform where quantum fluctuations are still unexplored.
We employ Bloch oscillations as an interferometric tool to assess the role quantum fluctuations play in an array of quasi-two-dimensional Bose-Einstein condensates.
Long-lived oscillations are observed when the chemical potential is balanced between sites, in a region where a macrodroplet is extended over several lattice sites.
arXiv Detail & Related papers (2022-05-06T15:05:36Z) - Controlling topological phases of matter with quantum light [0.0]
Controlling the topological properties of quantum matter is a major goal of condensed matter physics.
We consider a prototypical model for topological phase transition, the one-dimensional Su-Schrieffer-Heeger (SSH) model, coupled to a single mode cavity.
We show that depending on the lattice geometry and the strength of light-matter coupling one can either turn a trivial phase into a topological one or viceversa.
arXiv Detail & Related papers (2022-04-12T16:27:10Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Observing Movement of Dirac Cones from Single-Photon Dynamics [11.724015908522885]
Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect.
These peculiar physics arise from the unique properties of Dirac cones which show high hole degeneracy, massless charge carriers and linear intersection of bands.
Here, we demonstrate a direct observation of the movement of Dirac cones from single-photon dynamics in photonic graphene under different biaxial strains.
arXiv Detail & Related papers (2020-01-29T19:00:02Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.