Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
- URL: http://arxiv.org/abs/2411.16315v1
- Date: Mon, 25 Nov 2024 12:08:54 GMT
- Title: Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
- Authors: Zheng Li, Feng Xie, Yan Zeng, Zhi Geng,
- Abstract summary: Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science.
We propose a novel local learning approach for covariate selection in nonparametric causal effect estimation.
We validate our algorithm through extensive experiments on both synthetic and real-world data.
- Score: 13.12743473333296
- License:
- Abstract: Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science. A key component of this task is selecting an appropriate set of covariates for confounding adjustment to avoid bias. Most existing methods for covariate selection often assume the absence of latent variables and rely on learning the global network structure among variables. However, identifying the global structure can be unnecessary and inefficient, especially when our primary interest lies in estimating the effect of a treatment variable on an outcome variable. To address this limitation, we propose a novel local learning approach for covariate selection in nonparametric causal effect estimation, which accounts for the presence of latent variables. Our approach leverages testable independence and dependence relationships among observed variables to identify a valid adjustment set for a target causal relationship, ensuring both soundness and completeness under standard assumptions. We validate the effectiveness of our algorithm through extensive experiments on both synthetic and real-world data.
Related papers
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Local Causal Structure Learning in the Presence of Latent Variables [16.88791886307876]
We present a principled method for determining whether a variable is a direct cause or effect of a target.
Experimental results on both synthetic and real-world data validate the effectiveness and efficiency of our approach.
arXiv Detail & Related papers (2024-05-25T13:31:05Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
We present a comprehensive simulation study investigating the impact of feature correlation on the assessment of variable importance.
While there is always no correlation between knockoff variables and its corresponding predictor variables, we prove that the correlation increases linearly beyond a certain correlation threshold between the predictor variables.
arXiv Detail & Related papers (2024-02-05T19:02:13Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Active Invariant Causal Prediction: Experiment Selection through
Stability [4.56877715768796]
In this work we propose a new active learning (i.e. experiment selection) framework (A-ICP) based on Invariant Causal Prediction (ICP)
For general structural causal models, we characterize the effect of interventions on so-called stable sets.
We propose several intervention selection policies for A-ICP which quickly reveal the direct causes of a response variable in the causal graph.
Empirically, we analyze the performance of the proposed policies in both population and finite-regime experiments.
arXiv Detail & Related papers (2020-06-10T07:07:27Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
Previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction.
We propose a conditional independence test based algorithm to separate causal variables with a seed variable as priori, and adopt them for stable prediction.
Our algorithm outperforms state-of-the-art methods for stable prediction.
arXiv Detail & Related papers (2020-06-09T06:56:31Z) - Causal query in observational data with hidden variables [0.0]
We develop a theorem for using local search to find a superset of the adjustment variables for causal effect estimation from observational data.
Based on the developed theorem, we propose a data-driven algorithm for causal query.
Experiments show that the proposed algorithm is faster and produces better causal effect estimation than an existing data-driven causal effect estimation method with hidden variables.
arXiv Detail & Related papers (2020-01-28T11:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.