Active Invariant Causal Prediction: Experiment Selection through
Stability
- URL: http://arxiv.org/abs/2006.05690v3
- Date: Wed, 3 Nov 2021 11:50:35 GMT
- Title: Active Invariant Causal Prediction: Experiment Selection through
Stability
- Authors: Juan L. Gamella and Christina Heinze-Deml
- Abstract summary: In this work we propose a new active learning (i.e. experiment selection) framework (A-ICP) based on Invariant Causal Prediction (ICP)
For general structural causal models, we characterize the effect of interventions on so-called stable sets.
We propose several intervention selection policies for A-ICP which quickly reveal the direct causes of a response variable in the causal graph.
Empirically, we analyze the performance of the proposed policies in both population and finite-regime experiments.
- Score: 4.56877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental difficulty of causal learning is that causal models can
generally not be fully identified based on observational data only.
Interventional data, that is, data originating from different experimental
environments, improves identifiability. However, the improvement depends
critically on the target and nature of the interventions carried out in each
experiment. Since in real applications experiments tend to be costly, there is
a need to perform the right interventions such that as few as possible are
required. In this work we propose a new active learning (i.e. experiment
selection) framework (A-ICP) based on Invariant Causal Prediction (ICP) (Peters
et al., 2016). For general structural causal models, we characterize the effect
of interventions on so-called stable sets, a notion introduced by (Pfister et
al., 2019). We leverage these results to propose several intervention selection
policies for A-ICP which quickly reveal the direct causes of a response
variable in the causal graph while maintaining the error control inherent in
ICP. Empirically, we analyze the performance of the proposed policies in both
population and finite-regime experiments.
Related papers
- Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables [13.12743473333296]
Estimating causal effects from nonexperimental data is a fundamental problem in many fields of science.
We propose a novel local learning approach for covariate selection in nonparametric causal effect estimation.
We validate our algorithm through extensive experiments on both synthetic and real-world data.
arXiv Detail & Related papers (2024-11-25T12:08:54Z) - Identification of Single-Treatment Effects in Factorial Experiments [0.0]
I show that when multiple interventions are randomized in experiments, the effect any single intervention would have outside the experimental setting is not identified absent heroic assumptions.
observational studies and factorial experiments provide information about potential-outcome distributions with zero and multiple interventions.
I show that researchers who rely on this type of design have to justify either linearity of functional forms or specify with Directed Acyclic Graphs how variables are related in the real world.
arXiv Detail & Related papers (2024-05-16T04:01:53Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
We consider the task of identifying the causal parents of a target variable among a set of candidates from observational data.
We introduce a practical method called L-ICP ($textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction), which is based on a hypothesis test for parent identification using a ratio of minimum and maximum statistics.
arXiv Detail & Related papers (2024-01-10T15:34:42Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - Principles from Clinical Research for NLP Model Generalization [10.985226652193543]
We explore the foundations of generalizability and study the factors that affect it.
We demonstrate how learning spurious correlations, such as the distance between entities in relation extraction tasks, can affect a model's internal validity.
arXiv Detail & Related papers (2023-11-07T02:17:25Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors.
Each of these tests relies on the minimization of a novel loss function that is derived from tools in optimal transport theory.
We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.
arXiv Detail & Related papers (2021-10-13T22:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.